21 research outputs found

    Generation of broadband THz pulses in organic crystal OH1 at room temperature and 10 K

    Full text link
    We studied the effects of cryogenic cooling of a 2-[3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene] malononitrile (OH1) crystal on the generation of broadband THz pulses via collinear optical rectification of 1350 nm femtosecond laser pulses. Cooling of the OH1 crystal from room temperature to 10 K leads to a ~10% increase of the pump-to-THz energy conversion efficiency and a shift of the THz pulse spectra to a higher frequency range. Both effects are due the temperature variation of THz absorption and the refractive index of the OH1 crystal. This conclusion has been verified by temperature dependent measurements of the linear absorption in the THz frequency region

    Methods of Burning Solid Fuel Mixtures in Power Plants (Review)

    Get PDF
    В работе представлен один из наиболее доступных способов перехода к ресурсосберегающей и экологически безопасной выработке тепловой и электрической энергии угольными объектами теплоэнергетики, заключающийся в сжигании смесей топлив. Проведен обзор существующего опыта перевода действующего теплотехнического оборудования как в России, так и за рубежом, подробно описаны основные трудности в процессе сжигания твердотопливных смесей. Наиболее эффективные смеси по своим экологическим показателям получаются на основе угля и биомассы с ее добавлением по теплосодержанию не более 20 %. Горение остается одним из самых сложных и не исследованных процессов, а при совместном горении нескольких твердых топлив происходят дополнительные взаимодействия, которые влияют на основные характеристики горения, поэтому в работе отдельно рассмотрены методики исследований процесса горения и оборудование для проведения опытного сжигания твердотопливных смесейThe paper presents one of the most accessible ways to transition to resource-saving and environmentally safe generation of heat and electricity by coal-fired thermal power facilities, which consists in burning fuel mixtures. A review of the existing experience in the transfer of existing heat engineering equipment both in Russia and abroad is carried out, the main difficulties in the process of burning solid fuel mixtures are described in detail. The most effective mixtures in terms of their environmental performance are obtained on the basis of coal and biomass with its addition in terms of heat content of no more than 20 %. The combustion remains one of the most complex and unexplored processes, and during the joint combustion of several solid fuels, additional interactions occur that affect the main combustion characteristics, therefore, the paper separately considers the methods for studying the combustion process and equipment for experimental combustion of solid fuel mixture

    DAST/SiO<sub>2</sub> multilayer structure for efficient generation of 6 THz quasi-single-cycle electromagnetic pulses

    No full text
    We propose a DAST/SiO(2) multilayer structure for efficient generation of near-single-cycle THz transients with average frequency around 6 THz via collinear optical rectification of 800 nm femtosecond laser pulses. The use of such a composite material allows compensation for the phase mismatch that accompanies THz generation in bulk DAST crystals. The presented calculations indicate a strong increase in the THz generation efficiency in the DAST/SiO(2) structure in comparison to the case of bulk DAST crystal

    Generation of 30 <em>μ</em>J single-cycle terahertz pulses at 100 Hz repetition rate by optical rectification

    No full text
    We report the generation of 30 μJ single-cycle terahertz pulses at 100 Hz repetition rate by phase-matched optical rectification in lithium niobate using 28 mJ femtosecond laser pulses. The phase-matching condition is achieved by tilting the laser pulse intensity front. Temporal, spectral, and propagation properties of the generated terahertz pulses are presented. In addition, we discuss possibilities for further increasing the energy of single-cycle terahertz pulses obtained by optical rectification

    Scientific Applications of Distributed Acoustic Sensing: State-of-the-Art Review and Perspective

    No full text
    This work presents a detailed review of the development of distributed acoustic sensors (DAS) and their newest scientific applications. It covers most areas of human activities, such as the engineering, material, and humanitarian sciences, geophysics, culture, biology, and applied mechanics. It also provides the theoretical basis for most well-known DAS techniques and unveils the features that characterize each particular group of applications. After providing a summary of research achievements, the paper develops an initial perspective of the future work and determines the most promising DAS technologies that should be improved

    A new formation strategy of hybrid perovskites via room temperature reactive polyiodide melts

    No full text
    Here we introduce a new solvent-free preparation method for hybrid metal halide perovskites involving the direct reaction of metallic lead with polyiodide melts. We discovered new reactive polyiodide melts (RPMs) that can be prepared simply by adding elemental iodine to halide salts of the organic A cations of common hybrid perovskites, e.g. methylammonium iodide (MAI) and formamidinium iodide (FAI), and their corresponding bromide salts MABr and FABr. For MAI/I-2 ratios ranging from 1 : 1 to 1 : 3 they form room temperature ionic liquids containing polyiodide anions and organic counterions. We find that metallic lead can be converted within a few seconds into pure or mixed cation/anion large-grain perovskite films of high electronic quality by a reaction with the RPM. The melts can dissolve also lead derivatives, opening up a realm of opportunities for future development of self-flux growth, liquid phase epitaxy and crystallization of perovskites for solar cell applications

    In vivo dynamics of acidosis and oxidative stress in the acute phase of an ischemic stroke in a rodent model

    Get PDF
    Ischemic cerebral stroke is one of the leading causes of death and disability in humans. However, molecular processes underlying the development of this pathology remain poorly understood. There are major gaps in our understanding of metabolic changes that occur in the brain tissue during the early stages of ischemia and reperfusion. In particular, it is generally accepted that both ischemia (I) and reperfusion (R) generate reactive oxygen species (ROS) that cause oxidative stress which is one of the main drivers of the pathology, although ROS generation during I/R was never demonstrated in vivo due to the lack of suitable methods. In the present study, we record for the first time the dynamics of intracellular pH and H2O2 during I/R in cultured neurons and during experimental stroke in rats using the latest generation of genetically encoded biosensors SypHer3s and HyPer7. We detect a buildup of powerful acidosis in the brain tissue that overlaps with the ischemic core from the first seconds of pathogenesis. At the same time, no significant H2O2 generation was found in the acute phase of ischemia/reperfusion. HyPer7 oxidation in the brain was detected only 24 h later. Comparison of in vivo experiments with studies on cultured neurons under I/R demonstrates that the dynamics of metabolic processes in these models significantly differ, suggesting that a cell culture is a poor predictor of metabolic events in vivo
    corecore