14 research outputs found

    Quetiapine versus aripiprazole in children and adolescents with psychosis - protocol for the randomised, blinded clinical Tolerability and Efficacy of Antipsychotics (TEA) trial

    Get PDF
    Background: The evidence for choices between antipsychotics for children and adolescents with schizophrenia and other psychotic disorders is limited. The main objective of the Tolerability and Efficacy of Antipsychotics (TEA) trial is to compare the benefits and harms of quetiapine versus aripiprazole in children and adolescents with psychosis in order to inform rational, effective and safe treatment selections. Methods/Design: The TEA trial is a Danish investigator-initiated, independently funded, multi-centre, randomised, blinded clinical trial. Based on sample size estimation, 112 patients aged 12-17 years with psychosis, antipsychotic-naive or treated for a limited period are, 1:1 randomised to a 12-week, double-blind intervention with quetiapine versus aripiprazole. Effects on psychopathology, cognition, health-related quality of life, and adverse events are assessed 2, 4, and 12 weeks after randomisation. The primary outcome is change in the positive symptom score of the Positive and Negative Syndrome Scale. The recruitment period is 2010-2014. Discussion: Antipsychotics are currently the only available pharmacologic treatments for psychotic disorders. However, information about head-to-head differences in efficacy and tolerability of antipsychotics are scarce in children and adolescents. The TEA trial aims at expanding the evidence base for the use of antipsychotics in early onset psychosis in order to inform more rational treatment decisions in this vulnerable population. Here, we account for the trial design, address methodological challenges, and discuss the estimation of sample size

    Antigen 43 from Escherichia coli Induces Inter- and Intraspecies Cell Aggregation and Changes in Colony Morphology of Pseudomonas fluorescens

    Get PDF
    Antigen 43 (Ag43) is a surface-displayed autotransporter protein of Escherichia coli. By virtue of its self-association characteristics, this protein is able to mediate autoaggregation and flocculation of E. coli cells in static cultures. Additionally, surface display of Ag43 is associated with a distinct frizzy colony morphology in E. coli. Here we show that Ag43 can be expressed in a functional form on the surface of the environmentally important Pseudomonas fluorescens strain SBW25 with ensuing cell aggregation and frizzy colony types. Using green fluorescence protein-tagged cells, we demonstrate that Ag43 can be used as a tool to provide interspecies cell aggregation between E. coli and P. fluorescens. Furthermore, Ag43 expression enhances biofilm formation in P. fluorescens to glass surfaces. The versatility of this protein was also reflected in Ag43 surface display in a variety of other gram-negative bacteria. Display of heterologous Ag43 in selected bacteria might offer opportunities for rational design of multispecies consortia where the concerted action of several bacterial species is required, e.g., waste treatment and degradation of pollutants

    Antigen 43 facilitates formation of multispecies biofilms

    No full text
    Antigen 43 (Ag43) is a surface-displayed autotransporter protein of Escherichia coli. By virtue of its self-association characteristics, this protein is able to mediate autoaggregation of E. coli cells in static cultures. Here, we show that Ag43 can be expressed in a functional form on the surface of Pseudomonas fluorescens. Ag43 expression dramatically enhances the biofilm-forming potential of both E. coli and P. fluorescens to abiotic surfaces in simple microtitre well assays and in flow chambers. Importantly, Ag43-expressing E. coli and P. fluorescens cells tagged with Gfp and Rfp were shown to form interwoven biofilms in flow chambers. The three-dimensional structures of the biofilms were analysed by laser-confocal microscopy. Heterogeneous expression of Ag43 induced interspecies cell-to-cell contact that generated multispecies biofilm formation. Our data indicate that this versatile molecular tool can be used for the rational design of multispecies biofilms. More specifically, this novel technology offers opportunities for the design of multispecies consortia in which the concerted action of several bacterial species is required, e.g. waste treatment and degradation of pollutants

    Identification of a New Iron-Regulated Virulence Gene, ireA, in an Extraintestinal Pathogenic Isolate of Escherichia coli

    No full text
    Our laboratory is studying an extraintestinal pathogenic isolate of Escherichia coli (CP9) as a model pathogen. We have been using human urine, ascites, and blood ex vivo to identify genes with increased expression in these media relative to expression in Luria-Bertani (LB) broth. Such genes may represent new or unrecognized virulence traits. In this study, we report the identification of a new gene, ireA (iron-responsive element). This gene has an open reading frame of 2,049 nucleotides, and its peptide has a molecular mass of 75.3 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its expression is increased a mean of 3.6-fold in human urine, 16.2-fold in human ascites, and 6.6-fold in human blood relative to expression in LB medium, and it is Fe repressible. IreA also exhibits peptide similarities (48 to 56%) to previously identified proteins that function as siderophore receptors, suggesting that IreA is involved in iron acquisition. PCR-based analysis of ireA's phylogenetic distribution detected ireA in none (0%) of 14 fecal isolates that represented probable commensal strains, but in 13 (26%) of 50 random urine and blood clinical isolates (P = 0.05) and in 5 (100%) of 5 representatives of the J96-like, clonal group of which CP9 is a member (P < 0.001). In a mouse urinary tract infection model, the presence of ireA contributed significantly to CP9's ability to colonize the bladder (P < 0.02), evidence that IreA is a urovirulence factor. Taken together, these findings demonstrate that ireA encodes a new virulence factor, which is likely involved in Fe acquisition

    Adhesion of Type 1-Fimbriated Escherichia coli to Abiotic Surfaces Leads to Altered Composition of Outer Membrane Proteins

    No full text
    Phenotypic differences between planktonic bacteria and those attached to abiotic surfaces exist, but the mechanisms involved in the adhesion response of bacteria are not well understood. By the use of two-dimensional (2D) polyacrylamide gel electrophoresis, we have demonstrated that attachment of Escherichia coli to abiotic surfaces leads to alteration in the composition of outer membrane proteins. A major decrease in the abundance of resolved proteins was observed during adhesion of type 1-fimbriated E. coli strains, which was at least partly caused by proteolysis. Moreover, a study of fimbriated and nonfimbriated mutants revealed that these changes were due mainly to type 1 fimbria-mediated surface contact and that only a few changes occurred in the outer membranes of nonfimbriated mutant strains. Protein synthesis and proteolytic degradation were involved to different extents in adhesion of fimbriated and nonfimbriated cells. While protein synthesis appeared to affect adhesion of only the nonfimbriated strain, proteolytic activity mostly seemed to contribute to adhesion of the fimbriated strain. Using matrix-assisted laser desorption ionization–time of flight mass spectrometry, six of the proteins resolved by 2D analysis were identified as BtuB, EF-Tu, OmpA, OmpX, Slp, and TolC. While the first two proteins were unaffected by adhesion, the levels of the last four were moderately to strongly reduced. Based on the present results, it may be suggested that physical interactions between type 1 fimbriae and the surface are part of a surface-sensing mechanism in which protein turnover may contribute to the observed change in composition of outer membrane proteins. This change alters the surface characteristics of the cell envelope and may thus influence adhesion

    Do type 1 fimbriae promote inflammation in the human urinary tract?

    No full text
    Type 1 fimbriae have been implicated as virulence factors in animal models of urinary tract infection (UTI), but the function in human disease remains unclear. This study used a human challenge model to examine if type 1 fimbriae trigger inflammation in the urinary tract. The asymptomatic bacteriuria strain Escherichia coli 83972, which fails to express type 1 fimbriae, due to a 4.25 kb fimB-fimD deletion, was reconstituted with a functional fim gene cluster and fimbrial expression was monitored through a gfp reporter. Each patient was inoculated with the fim+ or fim- variants on separate occasions, and the host response to type 1 fimbriae was quantified by intraindividual comparisons of the responses to the fim+ or fim- isogens, using cytokines and neutrophils as end-points. Type 1 fimbriae did not promote inflammation and adherence was poor, as examined on exfoliated cells in urine. This was unexpected, as type 1 fimbriae enhanced the inflammatory response to the same strain in the murine urinary tract and as P fimbrial expression by E. coli 83972 enhances adherence and inflammation in challenged patients. We conclude that type 1 fimbriae do not contribute to the mucosal inflammatory response in the human urinary tract

    Quetiapine versus aripiprazole in children and adolescents with psychosis - protocol for the randomised, blinded clinical Tolerability and Efficacy of Antipsychotics (TEA) trial

    Get PDF
    BACKGROUND: The evidence for choices between antipsychotics for children and adolescents with schizophrenia and other psychotic disorders is limited. The main objective of the Tolerability and Efficacy of Antipsychotics (TEA) trial is to compare the benefits and harms of quetiapine versus aripiprazole in children and adolescents with psychosis in order to inform rational, effective and safe treatment selections. METHODS/DESIGN: The TEA trial is a Danish investigator-initiated, independently funded, multi-centre, randomised, blinded clinical trial. Based on sample size estimation, 112 patients aged 12-17 years with psychosis, antipsychotic-naïve or treated for a limited period are, 1:1 randomised to a 12- week, double-blind intervention with quetiapine versus aripiprazole. Effects on psychopathology, cognition, health-related quality of life, and adverse events are assessed 2, 4, and 12 weeks after randomisation. The primary outcome is change in the positive symptom score of the Positive and Negative Syndrome Scale. The recruitment period is 2010-2014. DISCUSSION: Antipsychotics are currently the only available pharmacologic treatments for psychotic disorders. However, information about head-to-head differences in efficacy and tolerability of antipsychotics are scarce in children and adolescents. The TEA trial aims at expanding the evidence base for the use of antipsychotics in early onset psychosis in order to inform more rational treatment decisions in this vulnerable population. Here, we account for the trial design, address methodological challenges, and discuss the estimation of sample size. TRIAL REGISTRATION: ClinicalTrials.gov: NCT0111901

    Orientational control of fimE expression in Escherichia coli.

    No full text
    Phase-variable expression of type 1 fimbriae is, in part, controlled by site-specific DNA inversion of the fim switch in Escherichia coli. Of the two fim recombinases (FimB and FimE) that catalyse the inversion reaction, FimE exhibits a strong bias for phase switching from the ON to the OFF orientation. The specificity associated with fimE is the result of two different mechanisms: (i) FimE exhibits a preference for the invertible element in the ON orientation as substrate for recombination; (ii) the invertible element in the OFF orientation acts in cis to inhibit recombinase activity (orientational control). We show here that the invertible element negatively regulates fimE, even though expression of a fimE-lacZYA transcriptional fusion is unaffected by orientational control. The fimE transcript extends into the invertible region and hence switch ON-specific and switch OFF-specific mRNA contain different sequences. Furthermore, we show that orientational control is suppressed by the insertion of a structured RNA (tRNA(Gly)) between fimE and the fim switch, indicating that the switch OFF-specific mRNA is inactivated by 3' to 5' degradation. Analysis of the fim switch reveals that it contains two inhibitory elements that exert orientational control independently
    corecore