184 research outputs found

    Impacts of climate change on plant diseases – opinions and trends

    Get PDF
    There has been a remarkable scientific output on the topic of how climate change is likely to affect plant diseases in the coming decades. This review addresses the need for review of this burgeoning literature by summarizing opinions of previous reviews and trends in recent studies on the impacts of climate change on plant health. Sudden Oak Death is used as an introductory case study: Californian forests could become even more susceptible to this emerging plant disease, if spring precipitations will be accompanied by warmer temperatures, although climate shifts may also affect the current synchronicity between host cambium activity and pathogen colonization rate. A summary of observed and predicted climate changes, as well as of direct effects of climate change on pathosystems, is provided. Prediction and management of climate change effects on plant health are complicated by indirect effects and the interactions with global change drivers. Uncertainty in models of plant disease development under climate change calls for a diversity of management strategies, from more participatory approaches to interdisciplinary science. Involvement of stakeholders and scientists from outside plant pathology shows the importance of trade-offs, for example in the land-sharing vs. sparing debate. Further research is needed on climate change and plant health in mountain, boreal, Mediterranean and tropical regions, with multiple climate change factors and scenarios (including our responses to it, e.g. the assisted migration of plants), in relation to endophytes, viruses and mycorrhiza, using long-term and large-scale datasets and considering various plant disease control methods

    Expression analysis of Clavata1-like and Nodulin21-like genes from Pinus sylvestris during ectomycorrhiza formation

    Get PDF
    The ecology and physiology of ectomycorrhizal (EcM) symbiosis with conifer trees are well documented. In comparison, however, very little is known about the molecular regulation of these associations. In an earlier study, we identified three EcM-regulated Pinus expressed sequence tags (EST), two of which were identified as homologous to the Medicago truncatula nodulin MtN21. The third EST was a homologue to the receptor-like kinase Clavata1. We have characterized the expression patterns of these genes and of auxin- and mycorrhiza-regulated genes after induction with indole-3-butyric acid in Pinus sylvestris and in a time course experiment during ectomycorrhizal initiation with the co-inoculation of 2,3,5-triiodobenzoic acid, an auxin transport inhibitor. Our results suggest that different P. sylvestris nodulin homologues are associated with diverse processes in the root. The results also suggest a potential role of the Clv1-like gene in lateral root initiation by the ectomycorrhizal fungus

    Hospitalised patients with suspected 2009 H1N1 Influenza A in a hospital in Norway, July - December 2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main objective of this study was to describe the patients who were hospitalised at Oslo University Hospital Aker during the first wave of pandemic Influenza A (H1N1) in Norway.</p> <p>Methods</p> <p>Clinical data on all patients hospitalised with influenza-like illness from July to the end of November 2009 were collected prospectively. Patients with confirmed H1N1 Influenza A were compared to patients with negative H1N1 tests.</p> <p>Results</p> <p>182 patients were hospitalised with suspected H1N1 Influenza A and 64 (35%) tested positive. Seventeen patients with positive tests (27%) were admitted to an intensive care unit and four patients died (6%). The H1N1 positive patients were younger, consisted of a higher proportion of non-ethnic Norwegians, had a higher heart rate on admission, and fewer had pre-existing hypertension, compared to the H1N1 negative patients. However, hypertension was the only medical condition that was significantly associated with a more serious outcome defined as ICU admission or death, with a univariate odds ratio of the composite endpoint in H1N1 positive and negative patients of 6.1 (95% CI 1.3-29.3) and 3.2 (95% CI 1.2-8.7), respectively. Chest radiography revealed pneumonia in 24/59 H1N1 positive patients. 63 of 64 H1N1 positive patients received oseltamivir.</p> <p>Conclusions</p> <p>The extra burden of hospitalisations was relatively small and we managed to admit all the patients with suspected H1N1 influenza without opening new pandemic isolation wards. The morbidity and mortality were similar to reports from comparable countries. Established hypertension was associated with more severe morbidity and patients with hypertension should be considered candidates for vaccination programs in future pandemics.</p

    Cadophora margaritata sp. nov. and other fungi associated with the longhorn beetles Anoplophora glabripennis and Saperda carcharias in Finland

    Get PDF
    Symbiosis with microbes is crucial for survival and development of wood-inhabiting longhorn beetles (Coleoptera: Cerambycidae). Thus, knowledge of the endemic fungal associates of insects would facilitate risk assessment in cases where a new invasive pest occupies the same ecological niche. However, the diversity of fungi associated with insects remains poorly understood. The aim of this study was to investigate fungi associated with the native large poplar longhorn beetle (Saperda carcharias) and the recently introduced Asian longhorn beetle (Anoplophora glabripennis) infesting hardwood trees in Finland. We studied the cultivable fungal associates obtained from Populus tremula colonised by S. carcharias, and Betula pendula and Salix caprea infested by A. glabripennis, and compared these to the samples collected from intact wood material. This study detected a number of plant pathogenic and saprotrophic fungi, and species with known potential for enzymatic degradation of wood components. Phylogenetic analyses of the most commonly encountered fungi isolated from the longhorn beetles revealed an association with fungi residing in the Cadophora-Mollisia species complex. A commonly encountered fungus was Cadophora spadicis, a recently described fungus associated with wood-decay. In addition, a novel species of Cadophora, for which the name Cadophora margaritata sp. nov. is provided, was isolated from the colonised wood.Peer reviewe
    corecore