171 research outputs found
Doom and Boom on a Resilient Reef: Climate Change, Algal Overgrowth and Coral Recovery
Background: Coral reefs around the world are experiencing large-scale degradation, largely due to global climate change, overfishing, diseases and eutrophication. Climate change models suggest increasing frequency and severity of warming-induced coral bleaching events, with consequent increases in coral mortality and algal overgrowth. Critically, the recovery of damaged reefs will depend on the reversibility of seaweed blooms, generally considered to depend on grazing of the seaweed, and replenishment of corals by larvae that successfully recruit to damaged reefs. These processes usually take years to decades to bring a reef back to coral dominance
Ecological Meltdown in the Firth of Clyde, Scotland: Two Centuries of Change in a Coastal Marine Ecosystem
BACKGROUND: The Firth of Clyde is a large inlet of the sea that extends over 100 km into Scotland\u27s west coast. METHODS: We compiled detailed fisheries landings data for this area and combined them with historical accounts to build a picture of change due to fishing activity over the last 200 years. FINDINGS: In the early 19th century, prior to the onset of industrial fishing, the Firth of Clyde supported diverse and productive fisheries for species such as herring (Clupea harengus, Clupeidae), cod (Gadus morhua, Gadidae), haddock (Melanogrammus aeglefinus, Gadidae), turbot (Psetta maxima, Scophthalmidae) and flounder (Platichthys flesus, Pleuronectidae). The 19th century saw increased demand for fish, which encouraged more indiscriminate methods of fishing such as bottom trawling. During the 1880s, fish landings began to decline, and upon the recommendation of local fishers and scientists, the Firth of Clyde was closed to large trawling vessels in 1889. This closure remained in place until 1962 when bottom trawling for Norway lobster (Nephrops norvegicus, Nephropidae) was approved in areas more than three nautical miles from the coast. During the 1960s and 1970s, landings of bottomfish increased as trawling intensified. The trawl closure within three nautical miles of the coast was repealed in 1984 under pressure from the industry. Thereafter, bottomfish landings went into terminal decline, with all species collapsing to zero or near zero landings by the early 21st century. Herring fisheries collapsed in the 1970s as more efficient mid-water trawls and fish finders were introduced, while a fishery for mid-water saithe (Pollachius virens, Gadidae) underwent a boom and bust shortly after discovery in the late 1960s. The only commercial fisheries that remain today are for Nephrops and scallops (Pecten maximus, Pectinidae). SIGNIFICANCE: The Firth of Clyde is a marine ecosystem nearing the endpoint of overfishing, a time when no species remain that are capable of sustaining commercial catches. The evidence suggests that trawl closures helped maintain productive fisheries through the mid-20th century, and their reopening precipitated collapse of bottomfish stocks. We argue that continued intensive bottom trawling for Nephrops with fine mesh nets will prevent the recovery of other species. This once diverse and highly productive environment will only be restored if trawl closures or other protected areas are re-introduced. The Firth of Clyde represents at a small scale a process that is occurring ocean-wide today, and its experience serves as a warning to others
In Situ Oxygen Dynamics in Coral-Algal Interactions
Background: Coral reefs degrade globally at an alarming rate, with benthic algae often replacing corals. However, the extent to which benthic algae contribute to coral mortality, and the potential mechanisms involved, remain disputed. Recent laboratory studies suggested that algae kill corals by inducing hypoxia on the coral surface, through stimulated microbial respiration. Methods/Findings: We examined the main premise of this hypothesis by measuring in situ oxygen microenvironments at the contact interface between the massive coral Porites spp. and turf algae, and between Porites spp. and crustose coralline algae (CCA). Oxygen levels at the interface were similar to healthy coral tissue and ranged between 300-400 μM during the day. At night, the interface was hypoxic (~70 μM) in coral-turf interactions and close to anoxic (~2 μM) in coral-CCA interactions, but these values were not significantly different from healthy tissue. The diffusive boundary layer (DBL) was about three times thicker at the interface than above healthy tissue, due to a depression in the local topography. A numerical model, developed to analyze the oxygen profiles above the irregular interface, revealed strongly reduced net photosynthesis and dark respiration rates at the coral-algal interface compared to unaffected tissue during the day and at night, respectively. Conclusions/Significance: Our results showed that hypoxia was not a consistent feature in the microenvironment of the coral-algal interface under in situ conditions. Therefore, hypoxia alone is unlikely to be the cause of coral mortality. Due to the modified topography, the interaction zone is distinguished by a thicker diffusive boundary layer, which limits the local metabolic activity and likely promotes accumulation of potentially harmful metabolic products (e.g., allelochemicals and protons). Our study highlights the importance of mass transfer phenomena and the need for direct in situ measurements of microenvironmental conditions in studies on coral stress. © 2012 Wangpraseurt et al
Empirical Models of Transitions between Coral Reef States: Effects of Region, Protection, and Environmental Change
There has been substantial recent change in coral reef communities. To date, most analyses have focussed on static patterns or changes in single variables such as coral cover. However, little is known about how community-level changes occur at large spatial scales. Here, we develop Markov models of annual changes in coral and macroalgal cover in the Caribbean and Great Barrier Reef (GBR) regions
Four Regional Marine Biodiversity Studies: Approaches and Contributions to Ecosystem-Based Management
We compare objectives and approaches of four regional studies of marine biodiversity: Gulf of Maine Area Census of Marine Life, Baltic Sea History of Marine Animal Populations, Great Barrier Reef Seabed Biodiversity Project, and Gulf of Mexico Biodiversity Project. Each program was designed as an "ecosystem" scale but was created independently and executed differently. Each lasted 8 to 10 years, including several years to refine program objectives, raise funding, and develop research networks. All resulted in improved baseline data and in new, or revised, data systems. Each contributed to the creation or evolution of interdisciplinary teams, and to regional, national, or international science-management linkages. To date, there have been differing extents of delivery and use of scientific information to and by management, with greatest integration by the program designed around specific management questions. We evaluate each research program's relative emphasis on three principal elements of biodiversity organization: composition, structure, and function. This approach is used to analyze existing ecosystem-wide biodiversity knowledge and to assess what is known and where gaps exist. In all four of these systems and studies, there is a relative paucity of investigation on functional elements of biodiversity, when compared with compositional and structural elements. This is symptomatic of the current state of the science. Substantial investment in understanding one or more biodiversity element(s) will allow issues to be addressed in a timely and more integrative fashion. Evaluating research needs and possible approaches across specific elements of biodiversity organization can facilitate planning of future studies and lead to more effective communication between scientists, managers, and stakeholders. Building a general approach that captures how various studies have focused on different biodiversity elements can also contribute to meta-analyses of worldwide experience in scientific research to support ecosystem-based management
- …