198 research outputs found

    Small chromosomes among Danish Candida glabrata isolates originated through different mechanisms

    Get PDF
    We analyzed 192 strains of the pathogenic yeast Candida glabrata from patients, mainly suffering from systemic infection, at Danish hospitals during 1985-1999. Our analysis showed that these strains were closely related but exhibited large karyotype polymorphism. Nine strains contained small chromosomes, which were smaller than 0.5 Mb. Regarding the year, patient and hospital, these C. glabrata strains had independent origin and the analyzed small chromosomes were structurally not related to each other (i.e. they contained different sets of genes). We suggest that at least two mechanisms could participate in their origin: (i) through a segmental duplication which covered the centromeric region, or (ii) by a translocation event moving a larger chromosome arm to another chromosome that leaves the centromere part with the shorter arm. The first type of small chromosomes carrying duplicated genes exhibited mitotic instability, while the second type, which contained the corresponding genes in only one copy in the genome, was mitotically stable. Apparently, in patients C. glabrata chromosomes are frequently reshuffled resulting in new genetic configurations, including appearance of small chromosomes, and some of these resulting "mutant" strains can have increased fitness in a certain patient "environment"

    Reduced Reactivation from Dormancy but Maintained Lineage Choice of Human Mesenchymal Stem Cells with Donor Age

    Get PDF
    Mesenchymal stem cells (MSC) are promising for cell-based regeneration therapies but up to date it is still controversial whether their function is maintained throughout ageing. Aim of this study was to address whether frequency, activation in vitro, replicative function, and in vitro lineage choice of MSC is maintained throughout ageing to answer the question whether MSC-based regeneration strategies should be restricted to younger individuals. MSC from bone marrow aspirates of 28 donors (5–80 years) were characterized regarding colony-forming unit-fibroblast (CFU-F) numbers, single cell cloning efficiency (SSCE), osteogenic, adipogenic and chondrogenic differentiation capacity in vitro. Alkaline phosphatase (ALP) activity, mineralization, Oil Red O content, proteoglycan- and collagen type II deposition were quantified. While CFU-F frequency was maintained, SSCE and early proliferation rate decreased significantly with advanced donor age. MSC with higher proliferation rate before start of induction showed stronger osteogenic, adipogenic and chondrogenic differentiation. MSC with high osteogenic capacity underwent better chondrogenesis and showed a trend to better adipogenesis. Lineage choice was, however, unaltered with age. Conclusion: Ageing influenced activation from dormancy and replicative function of MSC in a way that it may be more demanding to mobilize MSC to fast cell growth at advanced age. Since fast proliferation came along with high multilineage capacity, the proliferation status of expanded MSC rather than donor age may provide an argument to restrict MSC-based therapies to certain individuals

    Detection of large deletions in the LDL receptor gene with quantitative PCR methods

    Get PDF
    BACKGROUND: Familial Hypercholesterolemia (FH) is a common genetic disease and at the molecular level most often due to mutations in the LDL receptor gene. In genetically heterogeneous populations, major structural rearrangements account for about 5% of patients with LDL receptor gene mutations. METHODS: In this study we tested the ability of two different quantitative PCR methods, i.e. Real-Time PCR and Multiplex Ligation-Dependent Probe Amplification (MLPA), to detect deletions in the LDL receptor gene. We also reassessed the contribution of major structural rearrangements to the mutational spectrum of the LDL receptor gene in Denmark. RESULTS: With both methods it was possible to discriminate between one and two copies of the LDL receptor gene exon 5, but the MLPA method was cheaper, and it was far more accurate and precise than Real-Time PCR. In five of 318 patients with an FH phenotype, MLPA analysis revealed five different deletions in the LDL receptor gene. CONCLUSION: The MLPA method was accurate, precise and at the same time effective in screening a large number of FH patients for large deletions in the LDL receptor gene

    Targeting of human interleukin-12B by small hairpin RNAs in xenografted psoriatic skin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Psoriasis is a chronic inflammatory skin disorder that shows as erythematous and scaly lesions. The pathogenesis of psoriasis is driven by a dysregulation of the immune system which leads to an altered cytokine production. Proinflammatory cytokines that are up-regulated in psoriasis include tumor necrosis factor alpha (TNFα), interleukin-12 (IL-12), and IL-23 for which monoclonal antibodies have already been approved for clinical use. We have previously documented the therapeutic applicability of targeting TNFα mRNA for RNA interference-mediated down-regulation by anti-TNFα small hairpin RNAs (shRNAs) delivered by lentiviral vectors to xenografted psoriatic skin. The present report aims at targeting mRNA encoding the shared p40 subunit (IL-12B) of IL-12 and IL-23 by cellular transduction with lentiviral vectors encoding anti-IL12B shRNAs.</p> <p>Methods</p> <p>Effective anti-IL12B shRNAs are identified among a panel of shRNAs by potency measurements in cultured cells. The efficiency and persistency of lentiviral gene delivery to xenografted human skin are investigated by bioluminescence analysis of skin treated with lentiviral vectors encoding the luciferase gene. shRNA-expressing lentiviral vectors are intradermally injected in xenografted psoriatic skin and the effects of the treatment evaluated by clinical psoriasis scoring, by measurements of epidermal thickness, and IL-12B mRNA levels.</p> <p>Results</p> <p>Potent and persistent transgene expression following a single intradermal injection of lentiviral vectors in xenografted human skin is reported. Stable IL-12B mRNA knockdown and reduced epidermal thickness are achieved three weeks after treatment of xenografted psoriatic skin with lentivirus-encoded anti-IL12B shRNAs. These findings mimick the results obtained with anti-TNFα shRNAs but, in contrast to anti-TNFα treatment, anti-IL12B shRNAs do not ameliorate the psoriatic phenotype as evaluated by semi-quantitative clinical scoring and by immunohistological examination.</p> <p>Conclusions</p> <p>Our studies consolidate the properties of lentiviral vectors as a tool for potent gene delivery and for evaluation of mRNA targets for anti-inflammatory therapy. However, in contrast to local anti-TNFα treatment, the therapeutic potential of targeting IL-12B at the RNA level in psoriasis is questioned.</p

    Genomic characterization of five deletions in the LDL receptor gene in Danish Familial Hypercholesterolemic subjects

    Get PDF
    BACKGROUND: Familial Hypercholesterolemia is a common autosomal dominantly inherited disease that is most frequently caused by mutations in the gene encoding the receptor for low density lipoproteins (LDLR). Deletions and other major structural rearrangements of the LDLR gene account for approximately 5% of the mutations in many populations. METHODS: Five genomic deletions in the LDLR gene were characterized by amplification of mutated alleles and sequencing to identify genomic breakpoints. A diagnostic assay based on duplex PCR for the exon 7 – 8 deletion was developed to discriminate between heterozygotes and normals, and bioinformatic analyses were used to identify interspersed repeats flanking the deletions. RESULTS: In one case 15 bp had been inserted at the site of the deleted DNA, and, in all five cases, Alu elements flanked the sites where deletions had occurred. An assay developed to discriminate the wildtype and the deletion allele in a simple duplex PCR detected three FH patients as heterozygotes, and two individuals with normal lipid values were detected as normal homozygotes. CONCLUSION: The identification of the breakpoints should make it possible to develop specific tests for these mutations, and the data provide further evidence for the role of Alu repeats in intragenic deletions

    Lrp5 Is Not Required for the Proliferative Response of Osteoblasts to Strain but Regulates Proliferation and Apoptosis in a Cell Autonomous Manner

    Get PDF
    Although Lrp5 is known to be an important contributor to the mechanisms regulating bone mass, its precise role remains unclear. The aim of this study was to establish whether mutations in Lrp5 are associated with differences in the growth and/or apoptosis of osteoblast-like cells and their proliferative response to mechanical strain in vitro. Primary osteoblast-like cells were derived from cortical bone of adult mice lacking functional Lrp5 (Lrp5−/−), those heterozygous for the human G171V High Bone Mass (HBM) mutation (LRP5G171V) and their WT littermates (WTLrp5, WTHBM). Osteoblast proliferation over time was significantly higher in cultures of cells from LRP5G171V mice compared to their WTHBM littermates, and lower in Lrp5−/− cells. Cells from female LRP5G171V mice grew more rapidly than those from males, whereas cells from female Lrp5−/− mice grew more slowly than those from males. Apoptosis induced by serum withdrawal was significantly higher in cultures from Lrp5−/− mice than in those from WTHBM or LRP5G171V mice. Exposure to a single short period of dynamic mechanical strain was associated with a significant increase in cell number but this response was unaffected by genotype which also did not change the ‘threshold’ at which cells responded to strain. In conclusion, the data presented here suggest that Lrp5 loss and gain of function mutations result in cell-autonomous alterations in osteoblast proliferation and apoptosis but do not alter the proliferative response of osteoblasts to mechanical strain in vitro

    Distinct Roles of Bcl-2 and Bcl-Xl in the Apoptosis of Human Bone Marrow Mesenchymal Stem Cells during Differentiation

    Get PDF
    Background: Adult mesenchymal stem cells (MSCs) can be maintained over extended periods of time before activation and differentiation. Little is known about the programs that sustain the survival of these cells. Principal Findings: Undifferentiated adult human MSCs (hMSCs) did not undergo apoptosis in response to different cell death inducers. Conversely, the same inducers can readily induce apoptosis when hMSCs are engaged in the early stages of differentiation. The survival of undifferentiated cells is linked to the expression of Bcl-Xl and Bcl-2 in completely opposite ways. Bcl-Xl is expressed at similar levels in undifferentiated and differentiated hMSCs while Bcl-2 is expressed only in differentiated cells. In undifferentiated hMSCs, the down-regulation of Bcl-Xl is associated with an increased sensitivity to apoptosis while the ectopic expression of Bcl-2 induced apoptosis. This apoptosis is linked to the presence of cytoplasmic Nur 77 in undifferentiated hMSCs. Significance: In hMSCs, the expression of Bcl-2 depends on cellular differentiation and can be either pro- or anti-apoptotic. Bcl-Xl, on the other hand, exhibits an anti-apoptotic activity under all conditions
    corecore