159 research outputs found

    Periodic radial velocity variations in RU Lupi

    Full text link
    Context. RU Lup is a Classical T Tauri star with unusually strong emission lines, which has been interpreted as manifestations of accretion. Recently, evidence has accumulated that this star might have a variable radial velocity. Aims. We intended to investigate in more detail the possible variability in radial velocity using a set of 68 high-resolution spectra taken at the VLT (UVES), the AAT (UCLES) and the CTIO (echelle). Methods. Using standard cross-correlation techniques, we determined the radial velocity of RU Lup. We analysed these results with Phasedispersion minimization and the Lomb-Scargle periodogram and searched for possible periodicities in the obtained radial velocities. We also analysed changes in the absorption line shapes and the photometric variability of RU Lup. Results. Our analysis indicated that RU Lup exhibits variations in radial velocity with a periodicity of 3.71 days and an amplitude of 2.17 km/s. These variations can be explained by the presence of large spots, or groups of spots, on the surface of RU Lup. We also considered a low-mass companion and stellar pulsations as alternative sources for these variations but found these to be unlikely.Comment: 8 pages, 4 figures, Accepted by A&

    The Peculiar Periodic YSO WL 4 in ρ Ophiuchus

    Get PDF
    We present the discovery of 130.87 day periodic near-infrared flux variability for the Class II T Tauri star WL 4 (= 2MASS J16271848-2429059, ISO-Oph 128). Our data are from the 2MASS Calibration Point Source Working Database, and constitute 1580 observations in J, H and K_s of a field in ρ Ophiuchus used to calibrate the 2MASS All-Sky Survey. We identify a light curve for WL 4 with eclipse amplitudes of ~0.4 mag lasting more than one-quarter the period, and color variations in J-H and H-K_s, of ~0.1 mag. The long period cannot be explained by stellar rotation. We propose that WL 4 is a triple YSO system, with an inner binary orbital period of 130.87 days. We posulate that we are observing each component of the inner binary alternately being eclipsed by a circum-binary disk with respect to our line of sight. This system will be useful in investigating terrestrial zone YSO disk properties and dynamics at ~1 Myr

    WASP-1: A lithium- and metal-rich star with an oversized planet

    Full text link
    In this paper we present our results of a comprehensive spectroscopicanalysis of WASP-1, the host star to the exoplanet WASP-1b. We derive T_eff = 6110 +/- 45 K, log g = 4.28 +/- 0.15, and [M/H] = 0.23 +/- 0.08, and also a high abundance of lithium, log n(Li) = 2.91 +/- 0.05. These parameters suggests an age for the system of 1-3 Gyr and a stellar mass of 1.25-1.35 M_sun. This means that WASP-1 has properties very similar to those of HD 149026, the host star for the highest density planet yet detected. Moreover, their planets orbit at comparable distances and receive comparable irradiating fluxes from their host stars. However, despite the similarity of WASP-1 with HD 149026, their planets have strongly different densities. This suggests that gas-giant planet density is not a simple function of host-star metallicity or of radiation environment at ages of ~2 Gyr.Comment: Accepted for publication in MNRAS. 6 pages, 4 figure

    Unveiling extremely veiled T Tauri stars

    Get PDF
    Photospheric absorption lines in classical T Tauri stars (CTTS) are weak compared to normal stars. This so-called veiling is normally identified with an excess continuous emission formed in shock-heated gas at the stellar surface below the accretion streams. We have selected four stars (RW Aur A, RU Lup, S CrA NW and S CrA SE) with unusually strong veiling to make a detailed investigation of veiling versus stellar brightness and emission line strengths for comparisons to standard accretion models. We have monitored the stars photometrically and spectroscopically at several epochs. In standard accretion models a variable accretion rate will lead to a variable excess emission. Consequently, the stellar brightness should vary accordingly. We find that the veiling of absorption lines in these stars is strongly variable and usually so large that it would require the release of several stellar luminosities of potential energy. At states of very large line dilution, the correspondingly large veiling factors derived correlate only weakly with brightness. Moreover, the emission line strengths violate the expected trend of veiling versus line strength. The veiling can change dramatically in one night, and is not correlated with the phase of the rotation periods found for two stars. We show that in at least three of the stars, when the veiling becomes high, the photospheric lines become filled-in by line emission, which produces large veiling factors unrelated to changes in any continuous emission from shocked regions. We also consider to what extent extinction by dust and electron scattering in the accretion stream may affect veiling measures in CTTS. We conclude that the degree of veiling cannot be used as a measure of accretion rates in CTTS with rich emission line spectra.Comment: Accepted for publication in A&A Letters. New language-edited version. (4 pages, 3 figures

    Welcome back, Polaris the Cepheid

    Full text link
    For about 100 years the amplitude of the 4-day pulsation in Polaris has decreased. We present new results showing a significant increase in the amplitude based on 4.5 years of continuous monitoring from the ground and with two satellite missions.Comment: 5 pages; to appear in the proceedings of the "Cool Stars 15" workshop held at St Andrews, U

    Teff and logg dependence of FeH in M-dwarfs

    Full text link
    We present synthetic FeH band spectra in the z-filter range for several M-dwarf models with logg=3.0-5.0 [cgs] and Teff=2800K -3450K. Our aim is to characterize convective velocities in M-dwarfs and to give a rough estimate of the range in which 3D-atmosphere treatment is necessary and where 1D-atmosphere models suffice for the interpretation of molecular spectral features. This is also important in order to distinguish between the velocity-broadening and the rotational- or Zeeman-broadening. The synthetic spectra were calculated using 3D CO5BOLD radiative-hydrodynamic (RHD) models and the line synthesis code LINFOR3D. We used complete 3D-models and high resolution 3D spectral synthesis for the detailed study of some well isolated FeH lines. The FeH line strength shows a dependence on surface gravity and effective temperature and could be employed to measure both quantities in M-type objects. The line width is related to the velocity-field in the model stars, which depends strongly on surface gravity. Furthermore, we investigate the velocity-field in the 3D M-dwarf models together with the related micro- and macro-turbulent velocities in the 1D case. We also search for effects on the lineshapes.Comment: Cool Stars 15 Conference Proceeding, 4 page

    Teff and logg dependence of FeH in M-dwarfs

    Full text link
    We present synthetic FeH band spectra in the z-filter range for several M-dwarf models with logg=3.0-5.0 [cgs] and Teff=2800K -3450K. Our aim is to characterize convective velocities in M-dwarfs and to give a rough estimate of the range in which 3D-atmosphere treatment is necessary and where 1D-atmosphere models suffice for the interpretation of molecular spectral features. This is also important in order to distinguish between the velocity-broadening and the rotational- or Zeeman-broadening. The synthetic spectra were calculated using 3D CO5BOLD radiative-hydrodynamic (RHD) models and the line synthesis code LINFOR3D. We used complete 3D-models and high resolution 3D spectral synthesis for the detailed study of some well isolated FeH lines. The FeH line strength shows a dependence on surface gravity and effective temperature and could be employed to measure both quantities in M-type objects. The line width is related to the velocity-field in the model stars, which depends strongly on surface gravity. Furthermore, we investigate the velocity-field in the 3D M-dwarf models together with the related micro- and macro-turbulent velocities in the 1D case. We also search for effects on the lineshapes.Comment: Cool Stars 15 Conference Proceeding, 4 page

    Modelling Circumbinary Gas Flows in Close T Tauri Binaries

    Full text link
    Young close binaries open central gaps in the surrounding circumbinary accretion disc, but the stellar components may still gain mass from gas crossing through the gap. It is not well understood how this process operates and how the stellar components are affected by such inflows. Our main goal is to investigate how gas accretion takes place and evolves in close T Tauri binary systems. In particular, we model the accretion flows around two close T Tauri binaries, V4046 Sgr and DQ Tau, both showing periodic changes in emission lines, although their orbital characteristics are very different. In order to derive the density and velocity maps of the circumbinary material, we employ two-dimensional hydrodynamic simulations with a locally isothermal equation of state. The flow patterns become quasi-stable after a few orbits in the frame co-rotating with the system. Gas flows across the circumbinary gap through the co-rotating Lagrangian points, and local circumstellar discs develop around both components. Spiral density patterns develop in the circumbinary disc that transport angular momentum efficiently. Mass is preferentially channelled towards the primary and its circumstellar disc is more massive than the disc around the secondary. We also compare the derived density distribution to observed line profile variability. The line profile variability tracing the gas flows in the central cavity shows clear similarities with the corresponding observed line profile variability in V4046 Sgr, but only when the local circumstellar disc emission was excluded. Closer to the stars normal magnetospheric accretion may dominate while further out the dynamic accretion process outlined here dominates. Periodic changes in the accretion rates onto the stars can explain the outbursts of line emission observed in eccentric systems such as DQ Tau.Comment: Accepted for publication in MNRA
    corecore