631 research outputs found

    A Hierarchical Approach to Protein Molecular Evolution

    Get PDF
    Biological diversity has evolved despite the essentially infinite complexity of protein sequence space. We present a hierarchical approach to the efficient searching of this space and quantify the evolutionary potential of our approach with Monte Carlo simulations. These simulations demonstrate that non-homologous juxtaposition of encoded structure is the rate-limiting step in the production of new tertiary protein folds. Non-homologous ``swapping'' of low energy secondary structures increased the binding constant of a simulated protein by 107\approx10^7 relative to base substitution alone. Applications of our approach include the generation of new protein folds and modeling the molecular evolution of disease.Comment: 15 pages. 2 figures. LaTeX styl

    Автоматическая синхронизация генераторов

    Get PDF
    Исследование методов синхронизации генератора, в частности, точная синхронизация и самосинхронизация. В работе проводилось исследование определения оптимальных параметров включения генератора на параллельную работу. Проверялось влияние основных параметров, подключаемого к сети генератора, на возникновение ударных токов.Investigation of synchronization methods of the generator, in particular, precise synchronization and self-synchronization.In work the research of definition of optimum parameters of generator inclusion on parallel work was carried out. The effect of the main parameters connected to the generator network on the occurrence of shock currents was checked

    Dynamics of Competitive Evolution on a Smooth Landscape

    Full text link
    We study competitive DNA sequence evolution directed by {\it in vitro} protein binding. The steady-state dynamics of this process is well described by a shape-preserving pulse which decelerates and eventually reaches equilibrium. We explain this dynamical behavior within a continuum mean-field framework. Analytical results obtained on the motion of the pulse agree with simulations. Furthermore, finite population correction to the mean-field results are found to be insignificant.Comment: 4 pages, 2 figures, revised, to appear in Phys. Rev. Let

    Ab initio study of ferroelectric domain walls in PbTiO3

    Full text link
    We have investigated the atomistic structure of the 180-degree and 90-degree domain boundaries in the ferroelectric perovskite compound PbTiO3 using a first-principles ultrasoft-pseudopotential approach. For each case we have computed the position, thickness and creation energy of the domain walls, and an estimate of the barrier height for their motion has been obtained. We find both kinds of domain walls to be very narrow with a similar width of the order of one to two lattice constants. The energy of the 90-dergree domain wall is calculated to be 35 mJ/m^2, about a factor of four lower than the energy of its 180-degree counterpart, and only a miniscule barrier for its motion is found. As a surprising feature we detected a small offset of 0.15-0.2 eV in the electrostatic potential across the 90-degree domain wall.Comment: 12 pages, with 9 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/bm_dw/index.htm

    Analytical study of the effect of recombination on evolution via DNA shuffling

    Full text link
    We investigate a multi-locus evolutionary model which is based on the DNA shuffling protocol widely applied in \textit{in vitro} directed evolution. This model incorporates selection, recombination and point mutations. The simplicity of the model allows us to obtain a full analytical treatment of both its dynamical and equilibrium properties, for the case of an infinite population. We also briefly discuss finite population size corrections

    Rapid Assembly of Multiple-Exon cDNA Directly from Genomic DNA

    Get PDF
    Backgrouud. Polymerase chain reaction (PCR) is extensively applied in gene cloning. But due to the existence of introns, low copy number of particular genes and high complexity of the eukaryotic genome, it is usually impossible to amplify and clone a gene as a full-length sequence directly from the genome by ordinary PCR based techniques. Cloning of cDNA instead of genomic DNA involves multiple steps: harvest of tissues that express the gene of interest, RNA isolation, cDNA synthesis (reverse transcription), and PCR amplification. To simplify the cloning procedures and avoid the problems caused by ubiquitously distributed durable RNases, we have developed a novel strategy allowing the cloning of any cDNA or open reading frame (ORF) with wild type sequence in any spliced form from a single genomic DNA preparation. Methodology. Our Genomic DNA Splicing technique contains the following steps: first, all exons of the gene are amplified from a genomic DNA preparation, using software-optimized, highly efficient primers residing in flanking introns. Next, the tissue-specific exon sequences are assembled into one full-length sequence by overlapping PCR with deliberately designed primers located at the splicing sites. Finally, software-optimized outmost primers are exploited for efficient amplification of the assembled full-length products. Conclusions. The Genomic DNA Splicing protocol avoids RNA preparation and reverse transcription steps, and the entire assembly process can be finished within hours, Since genamic DNA is more stable than RNA, it may be a more practical cloning strategy for many genes, especially the ones that are very large and difficult to generate a full length cDNA using oligo-dT primed reverse transcription. With this technique, we successfully doned the full-length wild type coding sequence of human polymeric immunoglobulin receptor, which is 2295 bp in length and composed of 10 exons. © 2007 An et al.published_or_final_versio

    Genetically engineered minipigs model the major clinical features of human neurofibromatosis type 1.

    Get PDF
    Neurofibromatosis Type 1 (NF1) is a genetic disease caused by mutations in Neurofibromin 1 (NF1). NF1 patients present with a variety of clinical manifestations and are predisposed to cancer development. Many NF1 animal models have been developed, yet none display the spectrum of disease seen in patients and the translational impact of these models has been limited. We describe a minipig model that exhibits clinical hallmarks of NF1, including café au lait macules, neurofibromas, and optic pathway glioma. Spontaneous loss of heterozygosity is observed in this model, a phenomenon also described in NF1 patients. Oral administration of a mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor suppresses Ras signaling. To our knowledge, this model provides an unprecedented opportunity to study the complex biology and natural history of NF1 and could prove indispensable for development of imaging methods, biomarkers, and evaluation of safety and efficacy of NF1-targeted therapies
    corecore