296 research outputs found

    The Conglomerate: An Agglomeration of Views Reviewed

    Get PDF

    The Conglomerate: An Agglomeration of Views Reviewed

    Get PDF

    Antitrust Policy and the Conglomerates

    Get PDF

    Insurance Industry: A Case Study in the Workability of Regulated Competition

    Get PDF

    YSOVAR: Six pre-main-sequence eclipsing binaries in the Orion Nebula Cluster

    Get PDF
    Eclipsing binaries (EBs) provide critical laboratories for empirically testing predictions of theoretical models of stellar structure and evolution. Pre-main-sequence (PMS) EBs are particularly valuable, both due to their rarity and the highly dynamic nature of PMS evolution, such that a dense grid of PMS EBs is required to properly calibrate theoretical PMS models. Analyzing multi-epoch, multi-color light curves for 2400 candidateOrion Nebula Cluster (ONC) members from our Warm Spitzer Exploration Science Program YSOVAR, we have identified 12 stars whose light curves show eclipse features. Four of these 12 EBs are previously known. Supplementing our light curves with follow-up optical and near-infrared spectroscopy, we establish two of the candidates as likely field EBs lying behind the ONC. We confirm the remaining six candidate systems, however, as newly identified ONC PMS EBs. These systems increase the number of known PMS EBs by over 50% and include the highest mass (Theta1 Ori E, for which we provide a complete set of well-determined parameters including component masses of 2.807 and 2.797 solar masses) and longest period (ISOY J053505.71-052354.1, P \sim 20 days) PMS EBs currently known. In two cases (Theta1 Ori E and ISOY J053526.88-044730.7), enough photometric and spectroscopic data exist to attempt an orbit solution and derive the system parameters. For the remaining systems, we combine our data with literature information to provide a preliminary characterization sufficient to guide follow-up investigations of these rare, benchmark systems.Comment: Accepted by Ap

    The X-Ray Environment During the Epoch of Terrestrial Planet Formation: Chandra Observations of h Persei

    Full text link
    We describe Chandra/ACIS-I observations of the massive ~ 13--14 Myr-old cluster, h Persei, part of the famous Double Cluster (h and chi Persei) in Perseus. Combining the list of Chandra-detected sources with new optical/IR photometry and optical spectroscopy reveals ~ 165 X-ray bright stars with V < 23. Roughly 142 have optical magnitudes and colors consistent with cluster membership. The observed distribution of Lx peaks at Lx ~ 10^30.3 ergs/s and likely traces the bright edge of a far larger population of ~ 0.4--2 Msun X-ray active stars. From a short list of X-ray active stars with IRAC 8 micron excess from warm, terrestrial-zone dust, we derive a maximum X-ray flux incident on forming terrestrial planets. Although there is no correlation between X-ray activity and IRAC excess, the fractional X-ray luminosity correlates with optical colors and spectral type. By comparing the distribution of Lx/L* vs. spectral type and V-I in h Per with results for other 1--100 Myr-old clusters, we show that stars slightly more massive than the Sun (> 1.5 Msun) fall out of X-ray saturation by ~ 10--15 Myr. Changes in stellar structure for > 1.5 Msun stars likely play an important role in this decline of X-ray emission.Comment: 34 pages, 7 Figures, 2 Tables; Accepted for publication in The Astronomical Journa

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ÂŻbγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer Îșλ but also of the quartic HHV V (V = W, Z) coupling modifer Îș2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit ”HH &lt; 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 &lt; Îșλ &lt; 6.9 and −0.5 &lt; Îș2V &lt; 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF

    Measurement of the H → γ γ and H → ZZ∗ → 4 cross-sections in pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    The inclusive Higgs boson production cross section is measured in the di-photon and the Z Z∗ → 4 decay channels using 31.4 and 29.0 fb−1 of pp collision data respectively, collected with the ATLAS detector at a centre of-mass energy of √s = 13.6 TeV. To reduce the model dependence, the measurement in each channel is restricted to a particle-level phase space that closely matches the chan nel’s detector-level kinematic selection, and it is corrected for detector effects. These measured fiducial cross-sections are σfid,Îł Îł = 76+14 −13 fb, and σfid,4 = 2.80 ± 0.74 fb, in agreement with the corresponding Standard Model predic tions of 67.6±3.7 fb and 3.67±0.19 fb. Assuming Standard Model acceptances and branching fractions for the two chan nels, the fiducial measurements are extrapolated to the full phase space yielding total cross-sections of σ (pp → H) = 67+12 −11 pb and 46±12 pb at 13.6 TeV from the di-photon and Z Z∗ → 4 measurements respectively. The two measure ments are combined into a total cross-section measurement of σ (pp → H) = 58.2±8.7 pb, to be compared with the Stan dard Model prediction of σ (pp → H)SM = 59.9 ± 2.6 p
    • 

    corecore