55 research outputs found

    Controlling the superconducting transition by spin-orbit coupling

    Get PDF
    Whereas there exists considerable evidence for the conversion of singlet Cooper pairs into triplet Cooper pairs in the presence of inhomogeneous magnetic fields, recent theoretical proposals have suggested an alternative way to exert control over triplet generation: intrinsic spin-orbit coupling in a homogeneous ferromagnet coupled to a superconductor. Here, we proximity-couple Nb to an asymmetric Pt/Co/Pt trilayer, which acts as an effective spin-orbit coupled ferromagnet owing to structural inversion asymmetry. Unconventional modulation of the superconducting critical temperature as a function of in-plane and out-of- plane applied magnetic fields suggests the presence of triplets that can be controlled by the magnetic orientation of a single homogeneous ferromagnet. Our studies demonstrate for the first time an active role of spin-orbit coupling in controlling the triplets -- an important step towards the realization of novel superconducting spintronic devices.Comment: 11 pages + 4 figures + supplemental informatio

    A new kind of vortex pinning in superconductor / ferromagnet nanocomposites

    Full text link
    This paper reports the observation of hysteresis in the vortex pinning in a superconductor / ferromagnetic epitaxial nanocomposite consisting of fcc Gd particles incorporated in a Nb matrix. We show that this hysteretic pinning is associated with magnetic reversal losses in the Gd particles and is fundamentally different in origin to pinning interactions previously observed for ferromagnetic particles or other microstructural features.Comment: Submitted to PR

    Disorder induced collapse of the electron phonon coupling in MgB2_{2} observed by Raman Spectroscopy

    Full text link
    The Raman spectrum of the superconductor MgB2_{2} has been measured as a function of the Tc of the film. A striking correlation is observed between the TcT_{c} onset and the frequency of the E2gE_{2g} mode. Analysis of the data with the McMillan formula provides clear experimental evidence for the collapse of the electron phonon coupling at the temperature predicted for the convergence of two superconducting gaps into one observable gap. This gives indirect evidence of the convergence of the two gaps and direct evidence of a transition to an isotropic state at 19 K. The value of the electron phonon coupling constant is found to be 1.22 for films with Tc_{c} 39K and 0.80 for films with Tc_{c}\leq19K.Comment: 5 pages, 4 figure

    Fast Gate-Based Readout of Silicon Quantum Dots Using Josephson Parametric Amplification

    Get PDF
    Spins in silicon quantum devices are promising candidates for large-scale quantum computing. Gate-based sensing of spin qubits offers a compact and scalable readout with high fidelity, however, further improvements in sensitivity are required to meet the fidelity thresholds and measurement timescales needed for the implementation of fast feedback in error correction protocols. Here, we combine radio-frequency gate-based sensing at 622 MHz with a Josephson parametric amplifier, that operates in the 500–800 MHz band, to reduce the integration time required to read the state of a silicon double quantum dot formed in a nanowire transistor. Based on our achieved signal-to-noise ratio, we estimate that singlet-triplet single-shot readout with an average fidelity of 99.7% could be performed in 1     μ s , well below the requirements for fault-tolerant readout and 30 times faster than without the Josephson parametric amplifier. Additionally, the Josephson parametric amplifier allows operation at a lower radio-frequency power while maintaining identical signal-to-noise ratio. We determine a noise temperature of 200 mK with a contribution from the Josephson parametric amplifier (25%), cryogenic amplifier (25%) and the resonator (50%), showing routes to further increase the readout speed

    Role of Phagocytosis in the Pro-Inflammatory Response in LDL-Induced Foam Cell Formation; a Transcriptome Analysis

    Get PDF
    Excessive accumulation of lipid inclusions in the arterial wall cells (foam cell formation) caused by modified low-density lipoprotein (LDL) is the earliest and most noticeable manifestation of atherosclerosis. The mechanisms of foam cell formation are not fully understood and can involve altered lipid uptake, impaired lipid metabolism, or both. Recently, we have identified the top 10 master regulators that were involved in the accumulation of cholesterol in cultured macrophages induced by the incubation with modified LDL. It was found that most of the identified master regulators were related to the regulation of the inflammatory immune response, but not to lipid metabolism. A possible explanation for this unexpected result is a stimulation of the phagocytic activity of macrophages by modified LDL particle associates that have a relatively large size. In the current study, we investigated gene regulation in macrophages using transcriptome analysis to test the hypothesis that the primary event occurring upon the interaction of modified LDL and macrophages is the stimulation of phagocytosis, which subsequently triggers the pro-inflammatory immune response. We identified genes that were up- or downregulated following the exposure of cultured cells to modified LDL or latex beads (inert phagocytosis stimulators). Most of the identified master regulators were involved in the innate immune response, and some of them were encoding major pro-inflammatory proteins. The obtained results indicated that pro-inflammatory response to phagocytosis stimulation precedes the accumulation of intracellular lipids and possibly contributes to the formation of foam cells. In this way, the currently recognized hypothesis that the accumulation of lipids triggers the pro-inflammatory response was not confirmed. Comparative analysis of master regulators revealed similarities in the genetic regulation of the interaction of macrophages with naturally occurring LDL and desialylated LDL. Oxidized and desialylated LDL affected a different spectrum of genes than naturally occurring LDL. These observations suggest that desialylation is the most important modification of LDL occurring in vivo. Thus, modified LDL caused the gene regulation characteristic of the stimulation of phagocytosis. Additionally, the knock-down effect of five master regulators, such as IL15, EIF2AK3, F2RL1, TSPYL2, and ANXA1, on intracellular lipid accumulation was tested. We knocked down these genes in primary macrophages derived from human monocytes. The addition of atherogenic naturally occurring LDL caused a significant accumulation of cholesterol in the control cells. The knock-down of the EIF2AK3 and IL15 genes completely prevented cholesterol accumulation in cultured macrophages. The knock-down of the ANXA1 gene caused a further decrease in cholesterol content in cultured macrophages. At the same time, knock-down of F2RL1 and TSPYL2 did not cause an effect. The results obtained allowed us to explain in which way the inflammatory response and the accumulation of cholesterol are related confirming our hypothesis of atherogenesis development based on the following viewpoints: LDL particles undergo atherogenic modifications that, in turn, accompanied by the formation of self-associates; large LDL associates stimulate phagocytosis; as a result of phagocytosis stimulation, pro-inflammatory molecules are secreted; these molecules cause or at least contribute to the accumulation of intracellular cholesterol. Therefore, it became obvious that the primary event in this sequence is not the accumulation of cholesterol but an inflammatory response

    Microstructural studies of plastic indentations at low loads

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D198856 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    LOCAL DEVELOPMENT OF ALTERNATIVE ENERGY IN THE CONDITIONS OF GLOBALIZATION AS A FACTOR OF REDUCING RISKS AND MODERNIZING THE ECONOMY OF THE COUNTRY

    Get PDF
    The main direction of modernization of the world energy is the development of the so-called alternative (unconventional) energy, which implies the use of sources, technologies and forms of organizing energy production other than those currently dominant in a given country (region). The diversification of the economy, achieved through the development of alternative energy and other components of "green" growth, makes it possible to mitigate the crisis situation, the problem of employment in particular, and at the same time enhances the competitiveness of energy producers by obtaining new promising niches in the world market. When assessing the significance and prospects of alternative energy, we should not talk about replacing conventional sources, but about supplementing, diversifying the existing base of energy production at the local (regional) level with less capital-intensive installations on local renewable energy sources
    corecore