8 research outputs found

    A Role for Msh6 But Not Msh3 in Somatic Hypermutation and Class Switch Recombination

    Get PDF
    Somatic hypermutation is initiated by activation-induced cytidine deaminase (AID), and occurs in several kilobases of DNA around rearranged immunoglobulin variable (V) genes and switch (S) sites before constant genes. AID deaminates cytosine to uracil, which can produce mutations of C:G nucleotide pairs, and the mismatch repair protein Msh2 participates in generating substitutions of downstream A:T pairs. Msh2 is always found as a heterodimer with either Msh3 or Msh6, so it is important to know which one is involved. Therefore, we sequenced V and S regions from Msh3- and Msh6-deficient mice and compared mutations to those from wild-type mice. Msh6-deficient mice had fewer substitutions of A and T bases in both regions and reduced heavy chain class switching, whereas Msh3-deficient mice had normal antibody responses. This establishes a role for the Msh2-Msh6 heterodimer in hypermutation and switch recombination. When the positions of mutation were mapped, several focused peaks were found in Msh6βˆ’/βˆ’ clones, whereas mutations were dispersed in Msh3βˆ’/βˆ’ and wild-type clones. The peaks occurred at either G or C in WGCW motifs (W = A or T), indicating that C was mutated on both DNA strands. This suggests that AID has limited entry points into V and S regions in vivo, and subsequent mutation requires Msh2-Msh6 and DNA polymerase

    MSH2–MSH6 stimulates DNA polymerase Ξ·, suggesting a role for A:T mutations in antibody genes

    Get PDF
    Activation-induced cytidine deaminase deaminates cytosine to uracil (dU) in DNA, which leads to mutations at C:G basepairs in immunoglobulin genes during somatic hypermutation. The mechanism that generates mutations at A:T basepairs, however, remains unclear. It appears to require the MSH2–MSH6 mismatch repair heterodimer and DNA polymerase (pol) Ξ·, as mutations of A:T are decreased in mice and humans lacking these proteins. Here, we demonstrate that these proteins interact physically and functionally. First, we show that MSH2–MSH6 binds to a U:G mismatch but not to other DNA intermediates produced during base excision repair of dUs, including an abasic site and a deoxyribose phosphate group. Second, MSH2 binds to pol Ξ· in solution, and endogenous MSH2 associates with the pol in cell extracts. Third, MSH2–MSH6 stimulates the catalytic activity of pol Ξ· in vitro. These observations suggest that the interaction between MSH2–MSH6 and DNA pol Ξ· stimulates synthesis of mutations at bases located downstream of the initial dU lesion, including A:T pairs
    corecore