281 research outputs found

    Heterogeneous Vulnerability of Zero-Carbon Power Grids under Climate-Technological Changes

    Full text link
    The transition to decarbonized energy systems has become a priority at regional, national and global levels as a critical strategy to mitigate carbon emissions and therefore climate change. However, the vulnerabilities of the proposed zero-carbon power grid under climatic and technological changes have not been thoroughly examined. In this study, we focus on modeling the zero-carbon grid using a dataset that captures a broad variety of future climatic-technological scenarios, with New York State (NYS) as a case study. By accurately capturing the topology and operational constraints of the power grid, we identify spatiotemporal heterogeneity in vulnerabilities arising from the interplay of renewable resource availability, high load, and severe transmission line congestion. Our findings reveal a need for 30-65\% more firm, zero-emission capacity to ensure system reliability. Merely increasing wind and solar capacity is ineffective in improving reliability due to the spatial and temporal variations in vulnerabilities. This underscores the importance of considering spatiotemporal dynamics and operational constraints when making decisions regarding additional investments in renewable resources.Comment: This work will be submitted to Nature Energy for possible publication. The structure of sections has been tailored to meet the formatting requirements of Nature Energy. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change

    Get PDF
    Abstract. This study tests the performance and uncertainty of calibration strategies for a spatially distributed hydrologic model in order to improve model simulation accuracy and understand prediction uncertainty at interior ungaged sites of a sparsely gaged watershed. The study is conducted using a distributed version of the HYMOD hydrologic model (HY-MOD_DS) applied to the Kabul River basin. Several calibration experiments are conducted to understand the benefits and costs associated with different calibration choices, including (1) whether multisite gaged data should be used simultaneously or in a stepwise manner during model fitting, (2) the effects of increasing parameter complexity, and (3) the potential to estimate interior watershed flows using only gaged data at the basin outlet. The implications of the different calibration strategies are considered in the context of hydrologic projections under climate change. To address the research questions, high-performance computing is utilized to manage the computational burden that results from high-dimensional optimization problems. Several interesting results emerge from the study. The simultaneous use of multisite data is shown to improve the calibration over a stepwise approach, and both multisite approaches far exceed a calibration based on only the basin outlet. The basin outlet calibration can lead to projections of mid-21st century streamflow that deviate substantially from projections under multisite calibration strategies, supporting the use of caution when using distributed models in data-scarce regions for climate change impact assessments. Surprisingly, increased parameter complexity does not substantially increase the uncertainty in streamflow projections, even though parameter equifinality does emerge. The results suggest that increased (excessive) parameter complexity does not always lead to increased predictive uncertainty if structural uncertainties are present. The largest uncertainty in future streamflow results from variations in projected climate between climate models, which substantially outweighs the calibration uncertainty

    Bias Correction of Hydrologic Projections Strongly Impacts Inferred Climate Vulnerabilities in Institutionally Complex Water Systems

    Get PDF
    Water-resources planners use regional water management models (WMMs) to identify vulnerabilities to climate change. Frequently, dynamically downscaled climate inputs are used in conjunction with land-surface models (LSMs) to provide hydrologic streamflow projections, which serve as critical inputs for WMMs. Here, we show how even modest projection errors can strongly affect assessments of water availability and financial stability for irrigation districts in California. Specifically, our results highlight that LSM errors in projections of flood and drought extremes are highly interactive across timescales, path-dependent, and can be amplified when modeling infrastructure systems (e.g., misrepresenting banked groundwater). Common strategies for reducing errors in deterministic LSM hydrologic projections (e.g., bias correction) can themselves strongly distort projected climate vulnerabilities and misrepresent their inferred financial consequences. Overall, our results indicate a need to move beyond standard deterministic climate projection and error management frameworks that are dependent on single simulated climate change scenario outcomes

    Systems Modeling to Improve the Hydro-Ecological Performance of Diked Wetlands

    Get PDF
    Water scarcity and invasive vegetation threaten arid-region wetlands and wetland managers seek ways to enhance wetland ecosystem services with limited water, labor, and financial resources. While prior systems modeling efforts have focused on water management to improve flow-based ecosystem and habitat objectives, here we consider water allocation and invasive vegetation management that jointly target the concurrent hydrologic and vegetation habitat needs of priority wetland bird species. We formulate a composite weighted usable area for wetlands (WU) objective function that represents the wetland surface area that provides suitable water level and vegetation cover conditions for priority bird species. Maximizing the WU is subject to constraints such as water balance, hydraulic infrastructure capacity, invasive vegetation growth and control, and a limited financial budget to control vegetation. We apply the model at the Bear River Migratory Bird Refuge on the Great Salt Lake, Utah, compare model-recommended management actions to past Refuge water and vegetation control activities, and find that managers can almost double the area of suitable habitat by more dynamically managing water levels and managing invasive vegetation in August at the beginning of the window for control operations. Scenario and sensitivity analyses show the importance to jointly consider hydrology and vegetation system components rather than only the hydrological component

    “The Good into the Pot, the Bad into the Crop!”—A New Technology to Free Stem Cells from Feeder Cells

    Get PDF
    A variety of embryonic and adult stem cell lines require an intial co-culturing with feeder cells for non-differentiated growth, self renewal and maintenance of pluripotency. However for many downstream ES cell applications the feeder cells have to be considered contaminations that might interfere not just with the analysis of experimental data but also with clinical application and tissue engineering approaches. Here we introduce a novel technique that allows for the selection of pure feeder-freed stem cells, following stem cell proliferation on feeder cell layers. Complete and reproducible separation of feeder and embryonic stem cells was accomplished by adaptation of an automated cell selection system that resulted in the aspiration of distinct cell colonies or fraction of colonies according to predefined physical parameters. Analyzing neuronal differentiation we demonstrated feeder-freed stem cells to exhibit differentiation potentials comparable to embryonic stem cells differentiated under standard conditions. However, embryoid body growth as well as differentiation of stem cells into cardiomyocytes was significantly enhanced in feeder-freed cells, indicating a feeder cell dependent modulation of lineage differentiation during early embryoid body development. These findings underline the necessity to separate stem and feeder cells before the initiation of in vitro differentiation. The complete separation of stem and feeder cells by this new technology results in pure stem cell populations for translational approaches. Furthermore, a more detailed analysis of the effect of feeder cells on stem cell differentiation is now possible, that might facilitate the identification and development of new optimized human or genetically modified feeder cell lines

    Individual Differences in Sound-in-Noise Perception Are Related to the Strength of Short-Latency Neural Responses to Noise

    Get PDF
    Important sounds can be easily missed or misidentified in the presence of extraneous noise. We describe an auditory illusion in which a continuous ongoing tone becomes inaudible during a brief, non-masking noise burst more than one octave away, which is unexpected given the frequency resolution of human hearing. Participants strongly susceptible to this illusory discontinuity did not perceive illusory auditory continuity (in which a sound subjectively continues during a burst of masking noise) when the noises were short, yet did so at longer noise durations. Participants who were not prone to illusory discontinuity showed robust early electroencephalographic responses at 40–66 ms after noise burst onset, whereas those prone to the illusion lacked these early responses. These data suggest that short-latency neural responses to auditory scene components reflect subsequent individual differences in the parsing of auditory scenes

    Discrimination of Timbre in Early Auditory Responses of the Human Brain

    Get PDF
    The issue of how differences in timbre are represented in the neural response still has not been well addressed, particularly with regard to the relevant brain mechanisms. Here we employ phasing and clipping of tones to produce auditory stimuli differing to describe the multidimensional nature of timbre. We investigated the auditory response and sensory gating as well, using by magnetoencephalography (MEG).Thirty-five healthy subjects without hearing deficit participated in the experiments. Two different or same tones in timbre were presented through conditioning (S1) – testing (S2) paradigm as a pair with an interval of 500 ms. As a result, the magnitudes of auditory M50 and M100 responses were different with timbre in both hemispheres. This result might support that timbre, at least by phasing and clipping, is discriminated in the auditory early processing. The second response in a pair affected by S1 in the consecutive stimuli occurred in M100 of the left hemisphere, whereas both M50 and M100 responses to S2 only in the right hemisphere reflected whether two stimuli in a pair were the same or not. Both M50 and M100 magnitudes were different with the presenting order (S1 vs. S2) for both same and different conditions in the both hemispheres.Our results demonstrate that the auditory response depends on timbre characteristics. Moreover, it was revealed that the auditory sensory gating is determined not by the stimulus that directly evokes the response, but rather by whether or not the two stimuli are identical in timbre

    Discordant effect of body mass index on bone mineral density and speed of sound

    Get PDF
    BACKGROUND: Increased BMI may affect the determination of bone mineral density (BMD) by dual X-ray absorptiometry (DXA) and speed of sound (SOS) measured across bones. Preliminary data suggest that axial SOS is less affected by soft tissue. The purpose of this study is to evaluate the effect of body mass index (BMI) on BMD and SOS measured along bones. METHODS: We compared axial BMD determined by DXA with SOS along the phalanx, radius and tibia in 22 overweight (BMI > 27 kg/m(2)), and 11 lean (BMI = 21 kg/m(2)) postmenopausal women. Serum bone specific alkaline phosphatase and urinary deoxypyridinoline excretion determined bone turnover. RESULTS: Mean femoral neck – but not lumbar spine BMD was higher in the overweight – as compared with the lean group (0.70 ± 0.82, -0.99 ± 0.52, P < 0.00001). Femoral neck BMD in the overweight – but not in the lean group highly correlated with BMI (R = 0.68. P < 0.0001). Mean SOS at all measurement sites was similar in both groups and did not correlate with BMI. Bone turnover was similar in the two study groups. CONCLUSIONS: The high BMI of postmenopausal women may result in spuriously high BMD. SOS measured along bones may be a more appropriate means for evaluating bones of overweight women

    Pulmonary arterial medial smooth muscle thickness in sudden infant death syndrome: an analysis of subsets of 73 cases

    Get PDF
    Previous studies addressing pulmonary artery morphology have compared cases of sudden infant death syndrome (SIDS) to controls but none have compared demographic profiles, exposure to potentially hypoxic risk factors and other pathologic variables in SIDS cases grouped according to pulmonary artery medial smooth muscle thickness. Aims: To compare the relative medial thickness (RMT) in alveolar wall arteries (AW) in SIDS cases with that in age-matched controls and 2. Compare demographic, clinical, and pathologic characteristics among three subsets of SIDS cases based upon alveolar wall (AW) RMT. Retrospective morphometric planimetry of all muscularized arteries in standardized right apical lung sections in 73 SIDS cases divided into three groups based on increasing AW RMT as well as 19 controls age-matched to 19 of the SIDS cases. SIDS and age-matched control cases did not differ with respect to AW RMT or other demographic variables. The SIDS group with the thickest AW RMT had significantly more males and premature birth than the other groups, but the groups did not differ for known clinical risk factors that would potentially expose them to hypoxia. Pathologic variables, including pulmonary inflammation, gastric aspiration, intra-alveolar siderophages, cardiac valve circumferences, and heart and liver weights, were not different between groups. Age was not significantly correlated with RMT of alveolar wall and pre-acinar arteries but was significant at p = .018 for small intra-acinar arteries. The groups were different for RMT of small pre-acinar and intra-acinar arteries, which increased with increasing AW RMT. Statistical differences should not necessarily be equated with clinical importance, however future research incorporating more quantified historical data is recommended
    corecore