83 research outputs found

    Neonatal cerebrovascular autoregulation.

    Get PDF
    Cerebrovascular pressure autoregulation is the physiologic mechanism that holds cerebral blood flow (CBF) relatively constant across changes in cerebral perfusion pressure (CPP). Cerebral vasoreactivity refers to the vasoconstriction and vasodilation that occur during fluctuations in arterial blood pressure (ABP) to maintain autoregulation. These are vital protective mechanisms of the brain. Impairments in pressure autoregulation increase the risk of brain injury and persistent neurologic disability. Autoregulation may be impaired during various neonatal disease states including prematurity, hypoxic-ischemic encephalopathy (HIE), intraventricular hemorrhage, congenital cardiac disease, and infants requiring extracorporeal membrane oxygenation (ECMO). Because infants are exquisitely sensitive to changes in cerebral blood flow (CBF), both hypoperfusion and hyperperfusion can cause significant neurologic injury. We will review neonatal pressure autoregulation and autoregulation monitoring techniques with a focus on brain protection. Current clinical therapies have failed to fully prevent permanent brain injuries in neonates. Adjuvant treatments that support and optimize autoregulation may improve neurologic outcomes

    Phylogeny of Echinoderm Hemoglobins

    Get PDF
    Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates

    Accuracy of remote diagnoses using intraoral scans captured in approximate true color: a pilot and validation study in teledentistry

    Get PDF
    BACKGROUND Intraoral scans (IOS) provide three-dimensional images with approximate true colors representing a possible tool in teledentistry for remote examination. The aim of the present cross-sectional validation study was, therefore, to evaluate the levels of agreement between remote diagnoses derived from IOS and diagnoses based on clinical examinations for assessing dental and periodontal conditions. METHODS The test sample comprised 10 patients representing different clinical conditions. Following the acquisition of IOS (Trios, 3Shape), a full-mouth dental and periodontal examination was done and periapical radiographs were taken. Ten dentists were asked to perform dental and periodontal scorings for each of the ten patients on a tablet computer presenting the IOS. Scores included diagnosis of gingivitis/periodontitis, and evaluated presence as well as amount of plaque and calculus, and presence of teeth exhibiting gingival recession, furcation involvement, erosion, tooth wear, stain, and non-carious cervical lesion, as well as presence of decayed, filled, and crowned teeth and implants. In a second round of assessments, the periapical radiographs were provided and the dentists were able to change the scores. The time for the remote assessment was recorded. The agreement between remote and clinical scorings (reference) was then analyzed descriptively. RESULTS The mean time for the tele assessment was 3.17 min and the additional consultation of the radiographs accounted for another 1.48 min. The sensitivity and specificity values were 0.61 and 0.39 for gingivitis and 0.67 and 0.33 for periodontitis, with no relevant changes when radiographs were provided for the diagnosis of periodontitis (0.72 and 0.28). The agreement for dichotomized dental and periodontal indices ranged between 78 and 95%. With the provision of radiographs, the remote examiners were able to detect existing filled teeth, crowned teeth, and implants, whereas the detection of decayed teeth (70%) was not improved. CONCLUSIONS The remote examination using IOS was effective in detecting dental findings, whereas periodontal conditions could not be assessed with the same accuracy. Still, remote assessment of IOS would allow a time-efficient screening and triage of patients. Improvement of the image quality of IOS may further allow to increase the accuracy of remote assessments in dentistry. According to the Swiss Regulation this investigation is not a clinical trial and therefore no registration in a WHO-registry is needed

    Plasma hybrid welding with an integrated laser and sensor equipment

    No full text
    The objective of the "PiLS" research project carried out by iLAS and INP was to refine the plasma welding process in the current range up to 200 A without any filler material for steel sheets with sheet thicknesses between 2 mm and 5 mm. The aims were a substantially higher process speed, a raised weld quality as well as lower component distortions at system costs which are well below the costs of laser beam or laser beam hybrid processes. The arc attachment was to be influenced by the targeted and controlled utilisation of a low-power laser beam with certain focusing. However, contrary to the original assumption, it was not possible to spectroscopically prove any interactions of the laser beam with the plasma gas or the shielding gas (argon) or any interactions of the laser radiation with the metal constituents (material: S235), i.e. essentially iron. Instead of this, high-speed photographs served to reveal that the addition of the laser beam gives rise to an inversion of the flow in the molten pool which contributes to the formation of the keyhole. As a result of the investigations, it was possible to confirm the positive effect on the welding process exerted by the support of a low-power laser beam (less than 500 W). The welding speed as well as the process stability and the gap-bridging capacity were increased considerably with an added laser. Even difficult geometries and welding paths with corners and curves did not constitute any problems and the welding could be carried out reliably without any intervention in the process

    Laser surface pretreatment of 100Cr6 bearing steel - hardening effects and white etching zones

    No full text
    In order to achieve a surface pretreatment of the bearing steel 100Cr6 (1 – 1.5 wt. – % Cr) a laser-based process was used. The obtained modification may result in an optimization of the adhesive properties of the surface with respect to an anticorrosion polymer coating on the basis of PEEK (poly-ether-ether-ketone), which is applied on the steel surface by a laser melting technique. This work deals with the influence of the laser-based pretreatment regarding the surface microstructure and the micro-hardness of the steel, which has been examined by scanning electron microscopy (SEM), light microscopy and automated micro-hardness testing. The most suitable parameter set for the laser-based pretreatment leads to the formation of very hard white etching zones (WEZ) with a thickness of 23 μm, whereas this pretreatment also induces topographical changes. The occurrence of the white etching zones is attributed to near-surface re-austenitization and rapid quenching. Moreover, dark etching zones (DEZ) with a thickness of 32 μm are found at the laser path edges as well as underneath the white etching zones (WEZ). In these areas, the hardness is decreased due to the formation of oxides as a consequence of re-tempering
    • …
    corecore