963 research outputs found
Quantum noise of non-ideal Sagnac speed meter interferometer with asymmetries
The speed meter concept has been identified as a technique that can
potentially provide laser-interferometric measurements at a sensitivity level
which surpasses the Standard Quantum Limit (SQL) over a broad frequency range.
As with other sub-SQL measurement techniques, losses play a central role in
speed meter interferometers and they ultimately determine the quantum noise
limited sensitivity that can be achieved. So far in the literature, the quantum
noise limited sensitivity has only been derived for lossless or lossy cases
using certain approximations (for instance that the arm cavity round trip loss
is small compared to the arm cavity mirror transmission). In this article we
present a generalised, analytical treatment of losses in speed meters that
allows accurate calculation of the quantum noise limited sensitivity of Sagnac
speed meters with arm cavities. In addition, our analysis allows us to take
into account potential imperfections in the interferometer such as an
asymmetric beam splitter or differences of the reflectivities of the two arm
cavity input mirrors. Finally,we use the examples of the proof-of-concept
Sagnac speed meter currently under construction in Glasgow and a potential
implementation of a Sagnac speed meter in the Einstein Telescope (ET) to
illustrate how our findings affect Sagnac speed meters with meter- and
kilometre-long baselines.Comment: 22 pages, 8 figures, 1 table, (minor corrections and changes made to
text and figures in version 2
Experimental test of photonic entanglement in accelerated reference frames
The quantization of the electromagnetic field has successfully paved the way
for the development of the Standard Model of Particle Physics and has
established the basis for quantum technologies. Gravity, however, continues to
hold out against physicists' efforts of including it into the framework of
quantum theory. Experimental techniques in quantum optics have only recently
reached the precision and maturity required for the investigation of quantum
systems under the influence of gravitational fields. Here, we report on
experiments in which a genuine quantum state of an entangled photon pair was
exposed to a series of different accelerations. We measure an entanglement
witness for values ranging from 30 mg to up to 30 g - under free-fall as
well on a spinning centrifuge - and have thus derived an upper bound on the
effects of uniform acceleration on photonic entanglement. Our work represents
the first quantum optics experiment in which entanglement is systematically
tested in geodesic motion as well as in accelerated reference frames with
acceleration a>>g = 9.81 m/s^2.Comment: 7 pages, 5 figure
Candidates for a possible third-generation gravitational wave detector: comparison of ring-Sagnac and sloshing-Sagnac speedmeter interferometers
Speedmeters are known to be quantum non-demolition devices and, by potentially providing sensitivity beyond the standard quantum limit, become interesting for third generation gravitational wave detectors. Here we introduce a new configuration, the sloshing-Sagnac interferometer, and compare it to the more established ring-Sagnac interferometer. The sloshing-Sagnac interferometer is designed to provide improved quantum noise limited sensitivity and lower coating thermal noise than standard position meter interferometers employed in current gravitational wave detectors. We compare the quantum noise limited sensitivity of the ring-Sagnac and the sloshing-Sagnac interferometers, in the frequency range, from 5 Hz to 100 Hz, where they provide the greatest potential benefit. We evaluate the improvement in terms of the unweighted noise reduction below the standard quantum limit, and by finding the range up to which binary black hole inspirals may be observed. The sloshing-Sagnac was found to give approximately similar or better sensitivity than the ring-Sagnac in all cases. We also show that by eliminating the requirement for maximally-reflecting cavity end mirrors with correspondingly-thick multi-layer coatings, coating noise can be reduced by a factor of approximately 2.2 compared to conventional interferometers
Quantum-Dense Metrology
Quantum metrology utilizes entanglement for improving the sensitivity of
measurements. Up to now the focus has been on the measurement of just one out
of two non-commuting observables. Here we demonstrate a laser interferometer
that provides information about two non-commuting observables, with
uncertainties below that of the meter's quantum ground state. Our experiment is
a proof-of-principle of quantum dense metrology, and uses the additional
information to distinguish between the actual phase signal and a parasitic
signal due to scattered and frequency shifted photons. Our approach can be
readily applied to improve squeezed-light enhanced gravitational-wave detectors
at non-quantum noise limited detection frequencies in terms of a sub shot-noise
veto-channel.Comment: 5 pages, 3 figures; includes supplementary material
Design of a speed meter interferometer proof-of-principle experiment
The second generation of large scale interferometric gravitational wave
detectors will be limited by quantum noise over a wide frequency range in their
detection band. Further sensitivity improvements for future upgrades or new
detectors beyond the second generation motivate the development of measurement
schemes to mitigate the impact of quantum noise in these instruments. Two
strands of development are being pursued to reach this goal, focusing both on
modifications of the well-established Michelson detector configuration and
development of different detector topologies. In this paper, we present the
design of the world's first Sagnac speed meter interferometer which is
currently being constructed at the University of Glasgow. With this
proof-of-principle experiment we aim to demonstrate the theoretically predicted
lower quantum noise in a Sagnac interferometer compared to an equivalent
Michelson interferometer, to qualify Sagnac speed meters for further research
towards an implementation in a future generation large scale gravitational wave
detector, such as the planned Einstein Telescope observatory.Comment: Revised version: 16 pages, 6 figure
Recommended from our members
Selective Earth-Abundant System for CO2 Reduction: Comparing Photo- and Electrocatalytic Processes
The valorization of CO2 via photo- or electrocatalytic reduction constitutes a promising approach toward the sustainable production of fuels or value-added chemicals using intermittent renewable energy sources. For this purpose, molecular catalysts are generally studied independently with respect to the photo- or the electrochemical application, although a unifying approach would be much more effective with respect to the mechanistic understanding and the catalyst optimization. In this context, we present a combined photo- and electrocatalytic study of three Mn diimine catalysts, which demonstrates the synergistic interplay between the two methods. The photochemical part of our study involves the development of a catalytic system containing a heteroleptic Cu photosensitizer and the sacrificial BIH reagent. The system shows exclusive selectivity for CO generation and renders turnover numbers which are among the highest reported thus far within the group of fully earth-abundant photocatalytic systems. The electrochemical part of our investigations complements the mechanistic understanding of the photochemical process and demonstrates that in the present case the sacrificial reagent, the photosensitizer, and the irradiation source can be replaced by the electrode and a weak Brønsted acid. © 2019 American Chemical Society
Demonstration of the multimaterial coating concept to reduce thermal noise in gravitational-wave detectors
Thermal noise associated with the mechanical loss of current highly reflective mirror coatings is a critical limit to the sensitivity of gravitational-wave detectors. Several alternative coating materials show potential for reducing thermal noise, but cannot be used due to their high optical absorption. Multimaterial coatings have been proposed to enable the use of such materials to reduce thermal noise while minimizing their impact on the total absorption of the mirror coating. Here we present experimental verification of the multimaterial concept, by integrating aSi into a highly reflective SiO2 and Ta2O5 multilayer coating. We show a significant thermal noise improvement and demonstrate consistent optical and mechanical performance. The multimaterial coating survives the heat treatment required to minimize the absorption of the aSi layers, with no adverse effects from the different thermomechanical properties of the three materials
Measurements in two bases are sufficient for certifying high-dimensional entanglement
High-dimensional encoding of quantum information provides a promising method
of transcending current limitations in quantum communication. One of the
central challenges in the pursuit of such an approach is the certification of
high-dimensional entanglement. In particular, it is desirable to do so without
resorting to inefficient full state tomography. Here, we show how carefully
constructed measurements in two bases (one of which is not orthonormal) can be
used to faithfully and efficiently certify bipartite high-dimensional states
and their entanglement for any physical platform. To showcase the practicality
of this approach under realistic conditions, we put it to the test for photons
entangled in their orbital angular momentum. In our experimental setup, we are
able to verify 9-dimensional entanglement for a pair of photons on a
11-dimensional subspace each, at present the highest amount certified without
any assumptions on the state.Comment: 11+14 pages, 2+7 figure
Recommended from our members
Quasi-monocrystalline silicon for low-noise end mirrors in cryogenic gravitational-wave detectors
Mirrors made of silicon have been proposed for use in future cryogenic gravitational-wave detectors, which will be significantly more sensitive than current room-temperature detectors. These mirrors are planned to have diameters of ≈50 cm and a mass of ≈200 kg. While single-crystalline float-zone silicon meets the requirements of low optical absorption and low mechanical loss, the production of this type of material is restricted to sizes much smaller than required. Here we present studies of silicon produced by directional solidification. This material can be grown as quasi-monocrystalline ingots in sizes larger than currently required. We present measurements of a low room-temperature and cryogenic mechanical loss comparable with float-zone silicon. While the optical absorption of our test sample is significantly higher than required, the low mechanical loss motivates research into further absorption reduction in the future. While it is unclear if material pure enough for the transmissive detector input mirrors can be achieved, an absorption level suitable for the highly reflective coated end mirrors seems realistic. Together with the potential to produce samples much larger than ≈50 cm, this material may be of great benefit for realizing silicon-based gravitational-wave detectors
- …