3,128 research outputs found

    Performance of a 1.15-pressure-ratio axial-flow fan stage with a blade tip solidity of 0.5

    Get PDF
    The overall and blade-element performance of a low-solidity, low-pressure-ratio, low-tip-speed fan stage is presented over the stable operating range at rotative speeds from 90 to 120 percent of design speed. At design speed a stage peak efficiency of 0.836 was obtained at a weight flow of 30.27 kilograms per second and a pressure ratio of 1.111. The pressure ratio was less than design pressure ratio, and the design energy input into the rotor was not achieved. A mismatch of the rotor and stator blade elements resulted due to the lower than design pressure ratio of the rotor

    Aerodynamic performance of a 1.35-pressure-ratio axial-flow fan stage

    Get PDF
    The overall blade element performances and the aerodynamic design parameters are presented for a 1.35-pressure-ratio fan stage. The fan stage was designed for a weight flow of 32.7 kilograms per second and a tip speed of 302.8 meters per second. At design speed the stage peak efficiency of 0.879 occurred at a pressure ratio of 1.329 and design flow. Stage stall margin was approximately 14 percent. At design flow rotor efficiency was 0.94 and the pressure ratio was 1.360

    Stalled and stall-free performance of axial-flow compressor stage with three inlet-guide-vane and stator-blade settings

    Get PDF
    The performance of the first stage of a transonic, multistage compressor was mapped over a range of inlet-guide-vane and stator-blade settings. Both stall-free and deep-stall performance data were obtained. For the settings tested, as stall was encountered and flow was further reduced, a relatively sharp drop in pressure ratio occurred and was followed by a continuing but more gradual reduction in pressure ratio with reduced flow. The position of the stall line on the map of pressure ratio against equivalent weight flow was essentially unaffected over the range of inlet-guide-vane and stator-blade settings

    Performance of inlet stage of transonic compressor

    Get PDF
    The overall and blade-element performances are presented over the stable flow operating range of the stage at the design tip speed of 426 m/sec. Stage peak efficiency of 0.83 was obtained at a weight flow of 28.8 kg/sec and a pressure ratio of 1.52. The stall margin for the stage was 8 percent based on weight flow and pressure ratio at peak efficiency and stall. The rotor appears to be stalling prematurely as evidenced by high rotor tip losses

    Quantum Collective QCD String Dynamics

    Full text link
    The string breaking model of particle production is extended in order to help explain the transverse momentum distribution in elementary collisions. Inspired by an idea of Bialas', we treat the string using a collective coordinate approach. This leads to a chromo-electric field strength which fluctuates, and in turn implies that quarks are produced according to a thermal distribution.Comment: 6 pages. Presented at SQM 2006. Submitted to J. Phys. G for publication in proceedings. Vers. 2: Minor revisions; final hadron spectrum calculation include

    Ion acceleration in laser generated megatesla magnetic vortex

    Get PDF
    Magnetic Vortex Acceleration (MVA) from near critical density targets is one of the promising schemes of laser-driven ion acceleration. 3D particle-in-cell simulations are used to explore a more extensive laser-target parameter space than previously reported in the literature as well as to study the laser pulse coupling to the target, the structure of the fields, and the properties of the accelerated ion beam in the MVA scheme. The efficiency of acceleration depends on the coupling of the laser energy to the self-generated channel in the target. The accelerated proton beams demonstrate a high level of collimation with achromatic angular divergence, and carry a significant amount of charge. For petawatt-class lasers, this acceleration regime provides a favorable scaling of the maximum ion energy with the laser power for the optimized interaction parameters. The megatesla-level magnetic fields generated by the laser-driven coaxial plasma structure in the target are a prerequisite for accelerating protons to the energy of several hundred mega-electron-volts

    Statistical-Thermal Model Calculations using THERMUS

    Full text link
    Selected results obtained using THERMUS, a newly-developed statistical-thermal model analysis package, are presented.Comment: Contributed to 8th International Conference on Strangeness in Quark Matter, Cape Town, South Africa, 15-20 September 200

    The elevated Curie temperature and half-metallicity in the ferromagnetic semiconductor Lax_{x}Eu1−x_{1-x}O

    Get PDF
    Here we study the effect of La doping in EuO thin films using SQUID magnetometry, muon spin rotation (μ\muSR), polarized neutron reflectivity (PNR), and density functional theory (DFT). The μ\muSR data shows that the La0.15_{0.15}Eu0.85_{0.85}O is homogeneously magnetically ordered up to its elevated TCT_{\rm C}. It is concluded that bound magnetic polaron behavior does not explain the increase in TCT_{\rm C} and an RKKY-like interaction is consistent with the μ\muSR data. The estimation of the magnetic moment by DFT simulations concurs with the results obtained by PNR, showing a reduction of the magnetic moment per Lax_{x}Eu1−x_{1-x}O for increasing lanthanum doping. This reduction of the magnetic moment is explained by the reduction of the number of Eu-4ff electrons present in all the magnetic interactions in EuO films. Finally, we show that an upwards shift of the Fermi energy with La or Gd doping gives rise to half-metallicity for doping levels as high as 3.2 %.Comment: 7 pages, 11 figure
    • …
    corecore