471 research outputs found
High sensitivity phonon spectroscopy of Bose-Einstein condensates using matter-wave interference
We study low momentum excitations of a Bose-Einstein condensate using a novel
matter-wave interference technique. In time-of-flight expansion images we
observe strong matter-wave fringe patterns. The fringe contrast is a sensitive
spectroscopic probe of in-trap phonons and is explained by use of a Bogoliubov
excitation projection method applied to the rescaled order parameter of the
expanding condensate. Gross-Pitaevskii simulations agree with the experimental
data and confirm the validity of the theoretical interpretation. We show that
the high sensitivity of this detection scheme gives access to the quantized
quasiparticle regime.Comment: 5 pages, 5 figures, author list update
Echo spectroscopy of bulk Bogoliubov excitations in trapped Bose-Einstein condensates
We propose and demonstrate an echo method to reduce the inhomogeneous
linewidth of Bogoliubov excitations, in a harmonically-trapped Bose-Einstein
condensate. Our proposal includes the transfer of excitations with momentum +q
to -q using a double two photon Bragg process, in which a substantial reduction
of the inhomogeneous broadening is calculated. Furthermore, we predict an
enhancement in the method's efficiency for low momentum due to many-body
effects. The echo can also be implemented by using a four photon process, as is
demonstrated experimentally.Comment: 4 pages, 5 figure
A specific ovarian tumor protein isoform is required for efficient differentiation of germ cells in Drosophila oogenesis.
Mutations within the ovarian tumor (otu) gene result in abnormal ovarian development. It has been proposed that otu phenotypes result from abnormal germ cell division and differentiation. To understand better what role otu performs in oogenesis we have undertaken an analysis of protein expression from the otu locus. Anti-otu antibodies recognize two proteins from Drosophila ovary extracts with apparent molecular masses of 98 and 104 kD. Sequence analysis of otu cDNAs suggests that these proteins are translated from two mRNAs generated by alternative splicing of a 126-bp exon between the sixth and seventh exon of the smaller transcript. Analysis of otu protein expression in eight mutants indicates a correlation between the accumulation of the 104-kD isoform and predifferentiated germ cells and suggests that there is a developmental shift in the accumulation of the two isoforms upon differentiation of germ cells. Furthermore, the 104-kD isoform appears to be required for efficient differentiation of germ cells. Immunostaining of otu proteins is restricted to the cytoplasm of germ cells, and a rapid loss of oocyte immunostaining during stage 11 suggests that there is a rapid and selective degradation of otu proteins within the oocyte but not within its 15 interconnected nurse cells
Black hole lasers in Bose-Einstein condensates
We consider elongated condensates that cross twice the speed of sound. In the
absence of periodic boundary conditions, the phonon spectrum possesses a
discrete and finite set of complex frequency modes that induce a laser effect.
This effect constitutes a dynamical instability and is due to the fact that the
supersonic region acts as a resonant cavity. We numerically compute the complex
frequencies and density-density correlation function. We obtain patterns with
very specific signatures. In terms of the gravitational analogy, the flows we
consider correspond to a pair of black hole and white hole horizons, and the
laser effect can be conceived as a self-amplified Hawking radiation. This is
verified by comparing the outgoing flux at early time with the standard black
hole radiation.Comment: iopams, 37 pages, 14 figures, 1 table; for associated gif animations,
see http://people.sissa.it/~finazzi/bec_bhlasers/movies/ or
http://iopscience.iop.org/1367-2630/12/9/095015/media. Published on New. J.
Phys. (http://iopscience.iop.org/1367-2630/12/9/095015/). V2: few new
comments, modified figure
Bragg spectroscopy with an accelerating Bose-Einstein condensate
We present the results of Bragg spectroscopy performed on an accelerating
Bose-Einstein condensate. The Bose condensate undergoes circular micro-motion
in a magnetic TOP trap and the effect of this motion on the Bragg spectrum is
analyzed. A simple frequency modulation model is used to interpret the observed
complex structure, and broadening effects are considered using numerical
solutions to the Gross-Pitaevskii equation.Comment: 5 pages, 3 figures, to appear in PRA. Minor changes to text and fig
The Drosophila suppressor of sable protein binds to RNA and associates with a subset of polytene chromosome bands.
Mutations of the Drosophila melanogaster suppressor of sable [su(s)] gene, which encodes a 150-kDa nuclear protein [Su(s)], increase the accumulation of specific transcripts in a manner that is not well understood but that appears to involve pre-mRNA processing. Here, we report biochemical analysis of purified, recombinant Su(s) [rSu(s)] expressed in baculovirus and in Escherichia coli as maltose binding protein (MBP) fusions and immunocytochemical analysis of endogenous Su(s). This work has shown that purified, baculovirus-expressed rSu(s) binds to RNA in vitro with a high affinity and limited specificity. Systematic evolution of ligands by exponential enrichment was used to identify preferred RNA targets of rSu(s), and a large proportion of RNAs isolated contain a full or partial match to the consensus sequence UCAGUAGUCU, which was confirmed to be a high-affinity rSu(s) binding site. An MBP-Su(s) fusion protein containing the N-terminal third of Su(s) binds RNAs containing this sequence with a higher specificity than full-length, baculovirus-expressed rSu(s). The consensus sequence resembles both a cryptic 5' splice site and a sequence that is found near the 5' end of some Drosophila transcripts. Immunolocalization studies showed that endogenous Su(s) is distributed in a reticulated pattern in Drosophila embryo and salivary gland nuclei. In salivary gland cells, Su(s) is found both in the nucleoplasm and in association with a subset of polytene chromosome bands. Considering these and previous results, we propose two models to explain how su(s) mutations affect nuclear pre-mRNA processing
Quantum-fluid dynamics of microcavity polaritons
Semiconductor microcavities offer a unique system to investigate the physics
of weakly interacting bosons. Their elementary excitations, polaritons--a
mixture of excitons and photons--behave, in the low density limit, as bosons
that can undergo a phase transition to a regime characterised by long range
coherence. Condensates of polaritons have been advocated as candidates for
superfluidity; and the formation of vortices as well as elementary excitations
with a linear dispersion are actively sought after. In this work, we have
created and set in motion a macroscopically degenerate state of polaritons and
let it collide with a variety of defects present in the sample. Our experiments
show striking manifestations of a coherent light-matter packet that displays
features of a superfluid, although one of a highly unusual character as it
involves an out-of-equilibrium dissipative system where it travels at
ultra-fast velocity of the order of 1% the speed of light. Our main results are
the observation of i) a linear polariton dispersion accompanied with
diffusion-less motion, ii) flow without resistance when crossing an obstacle,
iii) suppression of Rayleigh scattering and iv) splitting into two fluids when
the size of the obstacle is comparable with the size of the wavepacket. This
work opens the way to the investigation of new phenomenology of
out-of-equilibrium condensates.Comment: 22 pages, 5 figure
Virus Replication as a Phenotypic Version of Polynucleotide Evolution
In this paper we revisit and adapt to viral evolution an approach based on
the theory of branching process advanced by Demetrius, Schuster and Sigmund
("Polynucleotide evolution and branching processes", Bull. Math. Biol. 46
(1985) 239-262), in their study of polynucleotide evolution. By taking into
account beneficial effects we obtain a non-trivial multivariate generalization
of their single-type branching process model. Perturbative techniques allows us
to obtain analytical asymptotic expressions for the main global parameters of
the model which lead to the following rigorous results: (i) a new criterion for
"no sure extinction", (ii) a generalization and proof, for this particular
class of models, of the lethal mutagenesis criterion proposed by Bull,
Sanju\'an and Wilke ("Theory of lethal mutagenesis for viruses", J. Virology 18
(2007) 2930-2939), (iii) a new proposal for the notion of relaxation time with
a quantitative prescription for its evaluation, (iv) the quantitative
description of the evolution of the expected values in in four distinct
"stages": extinction threshold, lethal mutagenesis, stationary "equilibrium"
and transient. Finally, based on these quantitative results we are able to draw
some qualitative conclusions.Comment: 23 pages, 1 figure, 2 tables. arXiv admin note: substantial text
overlap with arXiv:1110.336
Rotational superradiant scattering in a vortex flow
When an incident wave scatters off of an obstacle, it is partially reflected and partially transmitted. In theory, if the obstacle is rotating, waves can be amplified in the process, extracting energy from the scatterer. Here we describe in detail the first laboratory detection of this phenomenon, known as superradiance 1, 2, 3, 4. We observed that waves propagating on the surface of water can be amplified after being scattered by a draining vortex. The maximum amplification measured was 14% ± 8%, obtained for 3.70 Hz waves, in a 6.25-cm-deep fluid, consistent with the superradiant scattering caused by rapid rotation. We expect our experimental findings to be relevant to black-hole physics, since shallow water waves scattering on a draining fluid constitute an analogue of a black hole 5, 6, 7, 8, 9, 10, as well as to hydrodynamics, due to the close relation to over-reflection instabilities 11, 12, 13
- …