43 research outputs found

    A rapid application emissions-to-impacts tool for scenario assessment: Probabilistic Regional Impacts from Model patterns and Emissions (PRIME)

    Get PDF
    Climate policies evolve quickly, and new scenarios designed around these policies are used to illustrate how they impact global mean temperatures using simple climate models (or climate emulators). Simple climate models are extremely efficient although limited to showing only the global picture. Within the Intergovernmental Panel on Climate Change (IPCC) framework, there is a need to understand the regional impacts of scenarios that include the most recent science and policy decisions quickly to support government in negotiations. To address this, we present PRIME (Probabilistic Regional Impacts from Model patterns and Emissions), a new flexible probabilistic framework which aims to provide an efficient means to run new scenarios without the significant overheads of larger more complex Earth system models (ESMs). PRIME provides the capability to include the most recent models, science and scenarios to run ensemble simulations on multi-centennial timescales and include analysis of many variables that are relevant and important for impacts assessments. We use a simple climate model to provide the global temperatures to scale the patterns from a large number of the CMIP6 ESMs. These provide the inputs to a weather generator and a land-surface model, which generates an estimate of the land-surface impacts from the emissions scenarios. Here we test PRIME using known scenarios in the form of the Shared Socioeconomic Pathways (SSPs) to demonstrate that PRIME reproduces the climate response to a range of emissions scenarios, as shown in the IPCC reports. We show results for a range of scenarios including the SSP5-8.5 high emissions scenario, which was used to define the patterns; SSP1-2.6, a mitigation scenario with low emissions and SSP5-3.4-OS, an overshoot scenario. PRIME correctly represents the climate response for these known scenarios, which gives us confidence that PRIME will be useful for rapidly providing probabilistic spatially resolved information for novel climate scenarios; substantially reducing the time between the scenarios being released and being used in impacts assessments

    Global Tipping Points Report 2023: Ch1.2: Cryosphere tipping points.

    Get PDF
    Drastic changes in our planet’s frozen landscapes have occurred over recent decades, from Arctic sea ice decline and thawing of permafrost soils to polar amplification, the retreat of glaciers and ice loss from the ice sheets. In this chapter, we assess multiple lines of evidence for tipping points in the cryosphere – encompassing the ice sheets on Greenland and Antarctica, sea ice, mountain glaciers and permafrost – based on recent observations, palaeorecords, numerical modelling and theoretical understanding. With about 1.2°C of global warming compared to pre-industrial levels, we are getting dangerously close to the temperature thresholds of some major tipping points for the ice sheets of Greenland and West Antarctica. Crossing these would lock in unavoidable long-term global sea level rise of up to 10 metres. There is evidence for localised and regional tipping points for glaciers and permafrost and, while evidence for global-scale tipping dynamics in sea ice, glaciers and permafrost is limited, their decline will continue with unabated global warming. Because of the long response times of these systems, some impacts of crossing potential tipping points will unfold over centuries to millennia. However, with the current trajectory of greenhouse gas (GHG) emissions and subsequent anthropogenic climate change, such largely irreversible changes might already have been triggered. These will cause far-reaching impacts for ecosystems and humans alike, threatening the livelihoods of millions of people, and will become more severe the further global warming progresses

    Ten new insights in climate science 2023

    Get PDF
    Non-technical summary. We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5°C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. Technical summary. The Intergovernmental Panel on Climate Change Assessment Reports provides the scientific foundation for international climate negotiations and constitutes an unmatched resource for researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding of climate change across diverse research communities, we have streamlined an annual process to identify and synthesize significant research advances. We collected input from experts on various fields using an online questionnaire and prioritized a set of 10 key research insights with high policy relevance. This year, we focus on: (1) the looming overshoot of the 1.5°C warming limit, (2) the urgency of fossil fuel phase-out, (3) challenges to scale-up carbon dioxide removal, (4) uncertainties regarding future natural carbon sinks, (5) the need for joint governance of biodiversity loss and climate change, (6) advances in understanding compound events, (7) accelerated mountain glacier loss, (8) human immobility amidst climate risks, (9) adaptation justice, and (10) just transitions in food systems. We present a succinct account of these insights, reflect on their policy implications, and offer an integrated set of policy-relevant messages. This science synthesis and science communication effort is also the basis for a policy report contributing to elevate climate science every year in time for the United Nations Climate Change Conference. Social media summary. We highlight recent and policy-relevant advances in climate change research – with input from more than 200 experts

    Ten New Insights in Climate Science 2023/2024

    Get PDF
    Non-technical summary: We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5°C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. Technical summary The IPCC Assessment Reports offer the scientific foundation for international climate negotiations and constitute an unmatched resource for climate change researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding across diverse climate change research communities, we have streamlined an annual process to identify and synthesise essential research advances. We collected input from experts on different fields using an online questionnaire and prioritised a set of ten key research insights with high policy relevance. This year we focus on: (1) looming overshoot of the 1.5°C warming limit, (2) urgency of phasing-out fossil fuels, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future of natural carbon sinks, (5) need for join governance of biodiversity loss and climate change, (6) advances in the science of compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. We first present a succinct account of these Insights, reflect on their policy implications, and offer an integrated set of policy relevant messages. This science synthesis and science communication effort is also the basis for a report targeted to policymakers as a contribution to elevate climate science every year, in time for the UNFCCC COP. Social media summary We highlight recent and policy-relevant advances in climate change research - with input from more than 200 experts 1.</p

    Ten New Insights in Climate Science 2023/2024

    Get PDF
    Non-technical summary: We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5°C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. Technical summary The IPCC Assessment Reports offer the scientific foundation for international climate negotiations and constitute an unmatched resource for climate change researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding across diverse climate change research communities, we have streamlined an annual process to identify and synthesise essential research advances. We collected input from experts on different fields using an online questionnaire and prioritised a set of ten key research insights with high policy relevance. This year we focus on: (1) looming overshoot of the 1.5°C warming limit, (2) urgency of phasing-out fossil fuels, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future of natural carbon sinks, (5) need for join governance of biodiversity loss and climate change, (6) advances in the science of compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. We first present a succinct account of these Insights, reflect on their policy implications, and offer an integrated set of policy relevant messages. This science synthesis and science communication effort is also the basis for a report targeted to policymakers as a contribution to elevate climate science every year, in time for the UNFCCC COP. Social media summary We highlight recent and policy-relevant advances in climate change research - with input from more than 200 experts 1.</p

    Global Tipping Points Report 2023: Ch1.5: Climate tipping point interactions and cascades.

    Get PDF
    This chapter reviews interactions between climate tipping systems and assesses the potential risk of cascading effects. After a definition of tipping system interactions, we map out the current state of the literature on specific interactions between climate tipping systems that may be important for the overall stability of the climate system. For this, we gather evidence from model simulations, observations and conceptual understanding, as well as archetypal examples of palaeoclimate reconstructions where propagating transitions were potentially at play. This chapter concludes by identifying crucial knowledge gaps in tipping system interactions that should be resolved in order to improve risk assessments of cascading transitions under future climate change scenarios

    A comprehensive overview of radioguided surgery using gamma detection probe technology

    Get PDF
    The concept of radioguided surgery, which was first developed some 60 years ago, involves the use of a radiation detection probe system for the intraoperative detection of radionuclides. The use of gamma detection probe technology in radioguided surgery has tremendously expanded and has evolved into what is now considered an established discipline within the practice of surgery, revolutionizing the surgical management of many malignancies, including breast cancer, melanoma, and colorectal cancer, as well as the surgical management of parathyroid disease. The impact of radioguided surgery on the surgical management of cancer patients includes providing vital and real-time information to the surgeon regarding the location and extent of disease, as well as regarding the assessment of surgical resection margins. Additionally, it has allowed the surgeon to minimize the surgical invasiveness of many diagnostic and therapeutic procedures, while still maintaining maximum benefit to the cancer patient. In the current review, we have attempted to comprehensively evaluate the history, technical aspects, and clinical applications of radioguided surgery using gamma detection probe technology

    Variation in random capillary blood glucose and HbA1C as predictors of cystic fibrosis related diabetes (CFRD)

    Get PDF
    Borehole-based reconstruction is a wellestablished technique to recover information of the past climate variability based on two main hypotheses: (1) past ground surface temperature (GST) histories can be recovered from borehole temperature profiles (BTPs); (2) the past GST evolution is coupled to surface air temperature (SAT) changes, and thus, past SAT changes can be recovered from BTPs. Compared to some of the last millennium (LM) proxy-based reconstructions, previous studies based on the borehole technique indicate a larger temperature increase during the last few centuries. The nature of these differences has fostered the assessment of this reconstruction technique in search of potential causes of bias. Here, we expand previous works to explore potential methodological and physical biases using pseudo-proxy experiments with the Community Earth System Model Last Millennium Ensemble (CESM-LME). A heat-conduction forward model driven by simulated surface temperature is used to generate synthetic BTPs that are then inverted using singular value decomposition. This procedure is applied to the set of simulations that incorporates all of the LM external forcing factors as well as those that consider the concentration of the green house gases (GHGs) and the land use land cover (LULC) changes forcings separately. The results indicate that methodological issues may impact the representation of the simulated GST at different spatial scales, with the temporal logging of the BTPs as the main sampling issue that may lead to an underestimation of the simulated GST 20th-century trends. Our analysis also shows that in the surrogate reality of the CESM-LME the GST does not fully capture the SAT warming during the industrial period, and thus, there may be a further underestimation of the past SAT changes due to physical processes. Globally, this effect is mainly influenced by the GHG forcing, whereas regionally, LULC changes and other forcings factors also contribute. These findings suggest that despite the larger temperature increase suggested by the borehole estimations during the last few centuries of the LM relative to some other proxy reconstructions, both the methodological and physical biases would result in a underestimation of the 20th-century warming
    corecore