5,334 research outputs found

    Rapid Cooling of the Neutron Star in Cassiopeia A Triggered by Neutron Superfluidity in Dense Matter

    Full text link
    We propose that the observed cooling of the neutron star in Cassiopeia A is due to enhanced neutrino emission from the recent onset of the breaking and formation of neutron Cooper pairs in the 3P2 channel. We find that the critical temperature for this superfluid transition is ~0.5x10^9 K. The observed rapidity of the cooling implies that protons were already in a superconducting state with a larger critical temperature. Our prediction that this cooling will continue for several decades at the present rate can be tested by continuous monitoring of this neutron star.Comment: Revised version, to be published in Phys. Rev. Let

    Can one hear the shape of the Universe?

    Get PDF
    It is shown that the recent observations of NASA's explorer mission "Wilkinson Microwave Anisotropy Probe" (WMAP) hint that our Universe may possess a non-trivial topology. As an example we discuss the Picard space which is stretched out into an infinitely long horn but with finite volume.Comment: 4 page

    Searching for Radio Pulsars in 3EG Sources at Urumqi Observatory

    Full text link
    Since mid-2005, a pulsar searching system has been operating at 18 cm on the 25-m radio telescope of Urumqi Observatory. Test observations on known pulsars show that the system can perform the intended task. The prospect of using this system to observe 3EG sources and other target searching tasks is discussed.Comment: a training project about MSc thesi

    Third Neighbor Correlators of Spin-1/2 Heisenberg Antiferromagnet

    Full text link
    We exactly evaluate the third neighbor correlator and all the possible non-zero correlators <S^{alpha}_j S^{beta}_{j+1} S^{gamma}_{j+2} S^{delta}_{j+3}> of the spin-1/2 Heisenberg XXXXXX antiferromagnet in the ground state without magnetic field. All the correlators are expressed in terms of certain combinations of logarithm ln2, the Riemann zeta function zeta(3), zeta(5) with rational coefficients. The results accurately coincide with the numerical ones obtained by the density-matrix renormalization group method and the numerical diagonalization.Comment: 4 page

    Phase behaviour of additive binary mixtures in the limit of infinite asymmetry

    Get PDF
    We provide an exact mapping between the density functional of a binary mixture and that of the effective one-component fluid in the limit of infinite asymmetry. The fluid of parallel hard cubes is thus mapped onto that of parallel adhesive hard cubes. Its phase behaviour reveals that demixing of a very asymmetric mixture can only occur between a solvent-rich fluid and a permeated large particle solid or between two large particle solids with different packing fractions. Comparing with hard spheres mixtures we conclude that the phase behaviour of very asymmetric hard-particle mixtures can be determined from that of the large component interacting via an adhesive-like potential.Comment: Full rewriting of the paper (also new title). 4 pages, LaTeX, uses revtex, multicol, epsfig, and amstex style files, to appear in Phys. Rev. E (Rapid Comm.

    Measurement of the Gamow-Teller Strength Distribution in 58Co via the 58Ni(t,3He) reaction at 115 MeV/nucleon

    Full text link
    Electron capture and beta decay play important roles in the evolution of pre-supernovae stars and their eventual core collapse. These rates are normally predicted through shell-model calculations. Experimentally determined strength distributions from charge-exchange reactions are needed to test modern shell-model calculations. We report on the measurement of the Gamow-Teller strength distribution in 58Co from the 58Ni(t,3He) reaction with a secondary triton beam of an intensity of ~10^6 pps at 115 MeV/nucleon and a resolution of \~250 keV. Previous measurements with the 58Ni(n,p) and the 58Ni(d,2He) reactions were inconsistent with each other. Our results support the latter. We also compare the results to predictions of large-scale shell model calculations using the KB3G and GXPF1 interactions and investigate the impact of differences between the various experiments and theories in terms of the weak rates in the stellar environment. Finally, the systematic uncertainties in the normalization of the strength distribution extracted from 58Ni(3He,t) are described and turn out to be non-negligible due to large interferences between the dL=0, dS=1 Gamow-Teller amplitude and the dL=2, dS=1 amplitude.Comment: 14 pages, 8 figure

    Unconventional resistivity at the border of metallic antiferromagnetism in NiS2

    Get PDF
    We report low-temperature and high-pressure measurements of the electrical resistivity \rho(T) of the antiferromagnetic compound NiS_2 in its high-pressure metallic state. The form of \rho(T) suggests that metallic antiferromagnetism in NiS_2 is quenched at a critical pressure p_c=76+-5 kbar. Near p_c the temperature variation of \rho(T) is similar to that observed in NiS_{2-x}Se_x near the critical composition x=1 where the Neel temperature vanishes at ambient pressure. In both cases \rho(T) varies approximately as T^{1.5} over a wide range below 100 K. However, on closer analysis the resistivity exponent in NiS_2 exhibits an undulating variation with temperature not seen in NiSSe (x=1). This difference in behaviour may be due to the effects of spin-fluctuation scattering of charge carriers on cold and hot spots of the Fermi surface in the presence of quenched disorder, which is higher in NiSSe than in stoichiometric NiS_2.Comment: 7 page

    Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd

    Full text link
    A theory for the equilibrium low-temperature magnetization M of a diluted Heisenberg antiferromagnetic chain is presented. The magnetization curve, M versus B, is calculated using the exact contributions of finite chains with 1 to 5 spins, and the "rise and ramp approximation" for longer chains. Some non-equilibrium effects that occur in a rapidly changing B, are also considered. Specific non-equilibrium models based on earlier treatments of the phonon bottleneck, and of spin flips associated with cross relaxation and with level crossings, are discussed. Magnetization data on powders of TMMC diluted with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from pairs is used to determine the NN exchange constant, J, which changes from -5.9 K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained in the superconducting magnets are compared with simulations based on the equilibrium theory. Data for the differential susceptibility, dM/dB, were taken in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more severe as x decreased, were observed. The non-equilibrium effects are tentatively interpreted using the "Inadequate Heat Flow Scenario," or to cross-relaxation, and crossings of energy levels, including those of excited states.Comment: 16 pages, 14 figure

    The Optical System for the Large Size Telescope of the Cherenkov Telescope Array

    Full text link
    The Large Size Telescope (LST) of the Cherenkov Telescope Array (CTA) is designed to achieve a threshold energy of 20 GeV. The LST optics is composed of one parabolic primary mirror 23 m in diameter and 28 m focal length. The reflector dish is segmented in 198 hexagonal, 1.51 m flat to flat mirrors. The total effective reflective area, taking into account the shadow of the mechanical structure, is about 368 m2^2. The mirrors have a sandwich structure consisting of a glass sheet of 2.7 mm thickness, aluminum honeycomb of 60 mm thickness, and another glass sheet on the rear, and have a total weight about 47 kg. The mirror surface is produced using a sputtering deposition technique to apply a 5-layer coating, and the mirrors reach a reflectivity of \sim94% at peak. The mirror facets are actively aligned during operations by an active mirror control system, using actuators, CMOS cameras and a reference laser. Each mirror facet carries a CMOS camera, which measures the position of the light spot of the optical axis reference laser on the target of the telescope camera. The two actuators and the universal joint of each mirror facet are respectively fixed to three neighboring joints of the dish space frame, via specially designed interface plate.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589

    The communication complexity of non-signaling distributions

    Full text link
    We study a model of communication complexity that encompasses many well-studied problems, including classical and quantum communication complexity, the complexity of simulating distributions arising from bipartite measurements of shared quantum states, and XOR games. In this model, Alice gets an input x, Bob gets an input y, and their goal is to each produce an output a,b distributed according to some pre-specified joint distribution p(a,b|x,y). We introduce a new technique based on affine combinations of lower-complexity distributions. Specifically, we introduce two complexity measures, one which gives lower bounds on classical communication, and one for quantum communication. These measures can be expressed as convex optimization problems. We show that the dual formulations have a striking interpretation, since they coincide with maximum violations of Bell and Tsirelson inequalities. The dual expressions are closely related to the winning probability of XOR games. These lower bounds subsume many known communication complexity lower bound methods, most notably the recent lower bounds of Linial and Shraibman for the special case of Boolean functions. We show that the gap between the quantum and classical lower bounds is at most linear in the size of the support of the distribution, and does not depend on the size of the inputs. This translates into a bound on the gap between maximal Bell and Tsirelson inequality violations, which was previously known only for the case of distributions with Boolean outcomes and uniform marginals. Finally, we give an exponential upper bound on quantum and classical communication complexity in the simultaneous messages model, for any non-signaling distribution. One consequence is a simple proof that any quantum distribution can be approximated with a constant number of bits of communication.Comment: 23 pages. V2: major modifications, extensions and additions compared to V1. V3 (21 pages): proofs have been updated and simplified, particularly Theorem 10 and Theorem 22. V4 (23 pages): Section 3.1 has been rewritten (in particular Lemma 10 and its proof), and various minor modifications have been made. V5 (24 pages): various modifications in the presentatio
    corecore