20 research outputs found

    Real-time visual odometry from dense RGB-D images

    No full text
    We present an energy-based approach to visual odometry from RGB-D images of a Microsoft Kinect camera. To this end we propose an energy function which aims at finding the best rigid body motion to map one RGB-D image into another one, assuming a static scene filmed by a moving camera. We then propose a linearization of the energy function which leads to a 6×6 normal equation for the twist coordinates representing the rigid body motion. To allow for larger motions, we solve this equation in a coarse-to-fine scheme. Extensive quantitative analysis on recently proposed benchmark datasets shows that the proposed solution is faster than a state-of-the-art implementation of the iterative closest point (ICP) algorithm by two orders of magnitude. While ICP is more robust to large camera motion, the proposed method gives better results in the regime of small displacements which are often the case in camera tracking applications. 1

    The Effect of Increasing Chemical Complexity on the Mechanical and Functional Behavior of NiTi Related Shape Memory Alloys

    No full text
    The introduction of high entropy alloys HEA into the field of shape memory alloys offers enormous potential for improving their functional properties. It is shown how a successive increase in chemical complexity results in strictly monotonically enlarged and increasingly distorted lattices. With increasing the number of elements added to the alloy, the effect of solid solution strengthening appears to be curtailed and first insights into the contribution of additional mechanisms based on lattice distortions are possible. The alloys developed in this study, reaching from ternary NiTiHf to senary TiZrHfCoNiCu, show a great potential to exploit interatomic interactions regarding improvement of functional fatigue. Despite the absence of stress plateaus related to detwinning, recovery effects at loads above 1000 MPa and significant strain recoveries are show

    Investigation of GRIN2A in common epilepsy phenotypes

    Get PDF
    Recently, mutations and deletions in the GRIN2A gene have been identified to predispose to benign and severe idiopathic focal epilepsies (IFE), revealing a higher incidence of GRIN2A alterations among the more severe phenotypes. This study aimed to explore the phenotypic boundaries of GRIN2A mutations by investigating patients with the two most common epilepsy syndromes: (i) idiopathic generalized epilepsy (IGE) and (ii) temporal lobe epilepsy (TLE). Whole exome sequencing data of 238 patients with IGE as well as Sanger sequencing of 84 patients with TLE were evaluated for GRIN2A sequence alterations. Two additional independent cohorts comprising 1469 IGE and 330 TLE patients were screened for structural deletions (>40 kb) involving GRIN2A. Apart from a presumably benign, non-segregating variant in a patient with juvenile absence epilepsy, neither mutations nor deletions were detected in either cohort. These findings suggest that mutations in GRIN2A preferentially are involved in genetic variance of pediatric IFE and do not contribute significantly to either adult focal epilepsies as TLE or generalized epilepsies. (C) 2015 Elsevier B.V. All rights reserved.Peer reviewe
    corecore