12,874 research outputs found

    Method of measuring the thickness of radioactive thin films

    Get PDF
    Thickness monitor consists of proportional X-ray counter coupled to pulse counting system, copper filter over face of counter, rotatable collimator containing radioactive source, and rotatable shutter. Monitor can be used as integral part of neutron generator. It has been used to measure titanium tritide film thicknesses from 0.1 to 30 micrometers

    A superior process for forming titanium hydrogen isotopic films

    Get PDF
    Process forms stoichiometric, continuous, strongly bonded titanium hydrogen isotopic films. Films have thermal and electrical conductivities approximately the same as bulk pure titanium, ten times greater than those of usual thin films

    An X-ray monitor for measurement of a titanium tritide target thickness

    Get PDF
    An X-ray device capable of measuring titanium tritide film thickness from 0.1 to 30 micrometers has been built and tested. The monitor was designed for use in a rotating target system which used thick targets and incorporated a sputtering electrode to remove depleted layers from the target surface. The thickness measurement can be done in the presence of an intense background of bremsstrahlung and characteristic titanium X-radiation. A measurement can be accomplished in situ in two hours with reasonable accuracy

    A proposed method for regeneration of neutron producing targets, within an accelerator, by ion sputtering techniques

    Get PDF
    Sputtering electrode system design for regeneration of targets within accelerato

    Access to uncombined titanium through an inhibiting film in sublimation pumping of deuterium

    Get PDF
    It was demonstrated, through a series of experiments, that it is possible (by the addition of a thin layer of titanium to an apparently occluded surface) to gain access to previously deposited sublayers of uncombined titanium in spite of the presence of an inhibiting film (such as an oxide) on the surface

    A high yield neutron target

    Get PDF
    Target, in cylinder form, rotates rapidly in front of beam. Titanium tritide film is much thicker than range of accelerated deutron. Sputtering electrode permits full use of thick film. Stream of high-velocity coolant provides efficient transfer of heat from target

    Photonic measurements of the longitudinal expansion dynamics in Heavy-Ion collisions

    Full text link
    Due to the smallness of the electromagnetic coupling, photons escape from the hot and dense matter created in an heavy-ion collision at all times, in contrast to hadrons which are predominantly emitted in the final freeze-out phase of the evolving system. Thus, the thermal photon yield carries an imprint from the early evolution. We suggest how this fact can be used to gain information about where between the two limiting cases of Bjorken (boost-invariant expansion) and Landau (complete initial stopping and re-expansion) hydrodynamics the actual evolution can be found. We argue that both the rapidity dependence of the photon yield and photonic HBT radii are capable of answering this question.Comment: 10 pages, 3 figure

    Characteristic spatial scale of vesicle pair interactions in a plane linear flow

    Full text link
    We report the experimental studies on interaction of two vesicles trapped in a microfluidic analog of four-roll mill, where a plane linear flow is realized. We found that the dynamics of a single vesicle is significantly altered by the presence of another vesicle at separation distances up to about 3.2 \div 3.7 times of effective radius of the vesicles. This is supported by direct measurements of a single vesicle back-reaction on the velocity field. Thus, the experiment provides the lower bound for the interaction scale of vesicles and so the corresponding upper bound for the volume fraction \phi=0.08 \div 0.13 of non-interacting vesicle suspensions.Comment: 5 pages, 8 figures, PRE accepted for publicatio

    Extracting joint weak values with local, single-particle measurements

    Full text link
    Weak measurement is a new technique which allows one to describe the evolution of postselected quantum systems. It appears to be useful for resolving a variety of thorny quantum paradoxes, particularly when used to study properties of pairs of particles. Unfortunately, such nonlocal or joint observables often prove difficult to measure weakly in practice (for instance, in optics -- a common testing ground for this technique -- strong photon-photon interactions would be needed). Here we derive a general, experimentally feasible, method for extracting these values from correlations between single-particle observables.Comment: 6 page

    Identification of Decoherence-Free Subspaces Without Quantum Process Tomography

    Full text link
    Characterizing a quantum process is the critical first step towards applying such a process in a quantum information protocol. Full process characterization is known to be extremely resource-intensive, motivating the search for more efficient ways to extract salient information about the process. An example is the identification of "decoherence-free subspaces", in which computation or communications may be carried out, immune to the principal sources of decoherence in the system. Here we propose and demonstrate a protocol which enables one to directly identify a DFS without carrying out a full reconstruction. Our protocol offers an up-to-quadratic speedup over standard process tomography. In this paper, we experimentally identify the DFS of a two-qubit process with 32 measurements rather than the usual 256, characterize the robustness and efficiency of the protocol, and discuss its extension to higher-dimensional systems.Comment: 6 pages, 5 figure
    • …
    corecore