158 research outputs found

    A preliminary longitudinal study of white matter alteration in cocaine use disorder subjects

    Get PDF
    Background Previous diffusion tensor imaging (DTI) studies have consistently shown that subjects with cocaine use disorder (CocUD) had altered white matter microstructure in the corpus callosum. It is believed that these alterations are due to preexisting factors, chronic cocaine use, or both. However, there is no published longitudinal DTI study on human cocaine users yet which could shed light on the relationship between cocaine use and DTI findings. Methods This study used a longitudinal design and DTI to test if the white matter microstructure shows quicker alteration in CocUD subjects than controls. DTI data were acquired from eleven CocUD subjects who participated a treatment study and eleven non-drug-using controls at baseline (Scan 1) and after ten weeks (Scan 2). The baseline fractional anisotropy (FA), a general measure of white matter microstucture, and the change in FA (ΔFA, equals Scan 1 FA minus Scan 2 FA) were both compared between groups. Results The two groups did not show a difference in FA at baseline. The CocUD subjects had significantly greater ΔFA than the controls in the left splenium of the corpus callosum. In CocUD subjects, greater ΔFA in this region was associated with shorter lifetime cocaine use and greater number of positive cocaine urine samples collected during the treatment. Conclusion The finding in the left splenium is consistent with previous animal studies and provide indirect evidence about the effects of chronic cocaine use on white matter alterations. The subject sample size is small, therefore the results should be treated as preliminary

    Diffusion tensor imaging of cocaine-treated rodents.

    Get PDF
    Studies in cocaine-dependent human subjects have shown differences in white matter on diffusion tensor imaging (DTI) compared with non-drug-using controls. It is not known whether the differences in fractional anisotropy (FA) seen on DTI in white matter regions of cocaine-dependent humans result from a pre-existing predilection for drug use or purely from cocaine abuse. To study the effect of cocaine on brain white matter, DTI was performed on 24 rats after continuous infusion of cocaine or saline for 4 weeks, followed by brain histology. Voxel-based morphometry analysis showed an 18% FA decrease in the splenium of the corpus callosum (CC) in cocaine-treated animals relative to saline controls. On histology, significant increase in neurofilament expression (125%) and decrease in myelin basic protein (40%) were observed in the same region in cocaine-treated animals. This study supports the hypothesis that chronic cocaine use alters white matter integrity in human CC. Unlike humans, where the FA in the genu differed between cocaine users and non-users, the splenium was affected in rats. These differences between rodent and human findings could be due to several factors that include differences in the brain structure and function between species and/or the dose, timing, and duration of cocaine administration

    Increased Orbitofrontal Brain Activation after Administration of a Selective Adenosine A2A Antagonist in Cocaine Dependent Subjects

    Get PDF
    Background: Positron Emission Tomography imaging studies provide evidence of reduced dopamine function in cocaine dependent subjects in the striatum, which is correlated with prefrontal cortical glucose metabolism, particularly in the orbitofrontal cortex. However, whether enhancement of dopamine in the striatum in cocaine dependent subjects would be associated with changes in prefrontal cortical brain activation is unknown. One novel class of medications that enhance dopamine function via heteromer formation with dopamine receptors in the striatum is the selective adenosine A2A receptor antagonists. This study sought to determine the effects administration of the selective adenosine A2A receptor antagonist SYN115 on brain function in cocaine dependent subjects. Methodology/Principle Findings: Twelve cocaine dependent subjects underwent two fMRI scans (one after a dose of placebo and one after a dose of 100 mg of SYN115) while performing a working memory task with three levels of difficulty (3, 5, and 7 digits). fMRI results showed that for 7-digit working memory activation there was significantly greater activation from SYN115 compared to placebo in portions of left (L) lateral orbitofrontal cortex, L insula, and L superior and middle temporal pole. Conclusion/Significance: These findings are consistent with enhanced dopamine function in the striatum in cocaine dependent subjects via blockade of adenosine A2A receptors producing increased brain activation in the orbitofrontal cortex and other cortical regions. This suggests that at least some of the changes in brain activation in prefrontal cortical regions in cocaine dependent subjects may be related to altered striatal dopamine function, and that enhancement of dopamine function via adenosine A2A receptor blockade could be explored further for amelioration of neurobehavioral deficits associated with chronic cocaine use

    Adiposity has differing associations with incident coronary heart disease and mortality in the Scottish population: cross-sectional surveys with follow-up

    Get PDF
    Objective: Investigation of the association of excess adiposity with three different outcomes: all-cause mortality, coronary heart disease (CHD) mortality and incident CHD. Design: Cross-sectional surveys linked to hospital admissions and death records. Subjects: 19 329 adults (aged 18–86 years) from a representative sample of the Scottish population. Measurements: Gender-stratified Cox proportional hazards models were used to estimate hazard ratios (HRs) for all-cause mortality, CHD mortality and incident CHD. Separate models incorporating the anthropometric measurements body mass index (BMI), waist circumference (WC) or waist–hip ratio (WHR) were created adjusted for age, year of survey, smoking status and alcohol consumption. Results: For both genders, BMI-defined obesity (greater than or equal to30 kg m−2) was not associated with either an increased risk of all-cause mortality or CHD mortality. However, there was an increased risk of incident CHD among the obese men (hazard ratio (HR)=1.78; 95% confidence interval=1.37–2.31) and obese women (HR=1.93; 95% confidence interval=1.44–2.59). There was a similar pattern for WC with regard to the three outcomes; for incident CHD, the HR=1.70 (1.35–2.14) for men and 1.71 (1.28–2.29) for women in the highest WC category (men greater than or equal to102 cm, women greater than or equal to88 cm), synonymous with abdominal obesity. For men, the highest category of WHR (greater than or equal to1.0) was associated with an increased risk of all-cause mortality (1.29; 1.04–1.60) and incident CHD (1.55; 1.19–2.01). Among women with a high WHR (greater than or equal to0.85) there was an increased risk of all outcomes: all-cause mortality (1.56; 1.26–1.94), CHD mortality (2.49; 1.36–4.56) and incident CHD (1.76; 1.31–2.38). Conclusions: In this study excess adiposity was associated with an increased risk of incident CHD but not necessarily death. One possibility is that modern medical intervention has contributed to improved survival of first CHD events. The future health burden of increased obesity levels may manifest as an increase in the prevalence of individuals living with CHD and its consequences

    A TauP301L mouse model of dementia; development of pathology, synaptic transmission, microglial response and cognition throughout life

    Get PDF
    Background: Late stage Alzheimer's disease and other dementias are associated with neurofibrillary tangles and neurodegeneration. Here we describe a mouse (TauD35) carrying human Tau with the P301L mutation that results in Tau hyperphosphorylation and tangles. Previously we have compared gene expression in TauD35 mice to mice which develop plaques but no tangles. A similar comparison of other pathological features throughout disease progression is made here between amyloidβ and Tau mice. Methods: In vitro CA1 patch clamp and field recordings were used to investigate synaptic transmission and plasticity. Plaque load and microglia were investigated with immunohistochemistry. Cognition, locomotor activity and anxiety-related behaviours were assessed with a forced-alternation T-maze, open field and light/dark box. Results: Transgene copy number in TauD35 mice fell into two groups (HighTAU and LowTAU), allowing assessment of dose-dependent effects of overexpression and resulting in tangle load increasing 100-fold for a 2-fold change in protein levels. Tangles were first detected at 8 (HighTAU) or 13 months (LowTAU) but the effects on synaptic transmission and plasticity and behaviour were subtle. However severe neurodegeneration occurred in HighTAU mice at around 17 months preceded by considerable proliferation but little additional activation of microglia. Proliferation only started as neurodegeneration began at 13 months. Similarly to HighTau mice at 13 months of age, LowTAU mice at 24 months of age showed a comparable tangle load and microglial proliferation. However, LowTAU mice showed no neurodegeneration at this stage and considerable microglial activation, stressing the dependence of these effects on overexpression and/or age. Conclusions: Comparison of the effects of amyloidβ and plaques without tangles in a model of preclinical Alzheimer's disease to the effects of tangles without amyloidβ plaques in the late stage model described here may clarify the progressive stages of Alzheimer's disease. While Tau hyperphosphorylation and neurofibrillary tangles are eventually sufficient to cause severe neurodegeneration, initial effects on synaptic transmission and the immune response are subtle. In contrast while even with a heavy plaque load little if any neurodegeneration occurs, considerable effects on synaptic transmission and the immune system result, even before plaques are detectable

    Determining the Orientation of Protegrin-1 in DLPC Bilayers Using an Implicit Solvent-Membrane Model

    Get PDF
    Continuum models that describe the effects of solvent and biological membrane molecules on the structure and behavior of antimicrobial peptides, holds a promise to improve our understanding of the mechanisms of antimicrobial action of these peptides. In such methods, a lipid bilayer model membrane is implicitly represented by multiple layers of relatively low dielectric constant embedded in a high dielectric aqueous solvent, while an antimicrobial peptide is accounted for by a dielectric cavity with fixed partial charge at the center of each one of its atoms. In the present work, we investigate the ability of continuum approaches to predict the most probable orientation of the β-hairpin antimicrobial peptide Protegrin-1 (PG-1) in DLPC lipid bilayers by calculating the difference in the transfer free energy from an aqueous environment to a membrane-water environment for multiple orientations. The transfer free energy is computed as a sum of two terms; polar/electrostatic and non-polar. They both include energetic and entropic contributions to the free energy. We numerically solve the Poisson-Boltzmann equation to calculate the electrostatic contribution to the transfer free energy, while the non-polar contribution to the free energy is approximated using a linear solvent accessible surface area relationships. The most probable orientation of PG-1 is that with the lowest relative transfer free energy. Our simulation results indicate that PG-1 assumes an oblique orientation in DLPC lipid bilayers. The predicted most favorable orientation was with a tilt angle of 19°, which is in qualitative agreement with the experimentally observed orientations derived from solid-state NMR data

    SMF-1, SMF-2 and SMF-3 DMT1 Orthologues Regulate and Are Regulated Differentially by Manganese Levels in C. elegans

    Get PDF
    Manganese (Mn) is an essential metal that can exert toxic effects at high concentrations, eventually leading to Parkinsonism. A major transporter of Mn in mammals is the divalent-metal transporter (DMT1). We characterize here DMT1-like proteins in the nematode C. elegans, which regulate and are regulated by Mn and iron (Fe) content. We identified three new DMT1-like genes in C. elegans: smf-1, smf-2 and smf-3. All three can functionally substitute for loss of their yeast orthologues in S. cerevisiae. In the worm, deletion of smf-1 or smf-3 led to an increased Mn tolerance, while loss of smf-2 led to increased Mn sensitivity. smf mRNA levels measured by QRT-PCR were up-regulated upon low Mn and down-regulated upon high Mn exposures. Translational GFP-fusions revealed that SMF-1 and SMF-3 strongly localize to partially overlapping apical regions of the gut epithelium, suggesting a differential role for SMF-1 and SMF-3 in Mn nutritional intake. Conversely, SMF-2 was detected in the marginal pharyngeal epithelium, possibly involved in metal-sensing. Analysis of metal content upon Mn exposure in smf mutants revealed that SMF-3 is required for normal Mn uptake, while smf-1 was dispensable. Higher smf-2 mRNA levels correlated with higher Fe content, supporting a role for SMF-2 in Fe uptake. In smf-1 and smf-3 but not in smf-2 mutants, increased Mn exposure led to decreased Fe levels, suggesting that both metals compete for transport by SMF-2. Finally, SMF-3 was post-translationally and reversibly down-regulated following Mn-exposure. In sum, we unraveled a complex interplay of transcriptional and post-translational regulations of 3 DMT1-like transporters in two adjacent tissues, which regulate metal-content in C. elegans
    corecore