1,235 research outputs found
Characteristic spatial scale of vesicle pair interactions in a plane linear flow
We report the experimental studies on interaction of two vesicles trapped in
a microfluidic analog of four-roll mill, where a plane linear flow is realized.
We found that the dynamics of a single vesicle is significantly altered by the
presence of another vesicle at separation distances up to about 3.2 \div 3.7
times of effective radius of the vesicles. This is supported by direct
measurements of a single vesicle back-reaction on the velocity field. Thus, the
experiment provides the lower bound for the interaction scale of vesicles and
so the corresponding upper bound for the volume fraction \phi=0.08 \div 0.13 of
non-interacting vesicle suspensions.Comment: 5 pages, 8 figures, PRE accepted for publicatio
Stereotactic MRI-guided Adaptive Radiation Therapy (SMART) for Locally Advanced Pancreatic Cancer: A Promising Approach.
Locally advanced pancreatic cancer (LAPC) is characterized by poor prognosis and low response durability with standard-of-care chemotherapy or chemoradiotherapy treatment. Stereotactic body radiation therapy (SBRT), which has a shorter treatment course than conventionally fractionated radiotherapy and allows for better integration with systemic therapy, may confer a survival benefit but is limited by gastrointestinal toxicity. Stereotactic MRI-guided adaptive radiation therapy (SMART) has recently gained attention for its potential to increase treatment precision and thus minimize this toxicity through continuous real-time soft-tissue imaging during radiotherapy. The case presented here illustrates the promising outcome of a 69-year-old male patient with LAPC treated with SMART with daily adaptive planning and respiratory-gated technique
Stereotactic Magnetic Resonance-guided Online Adaptive Radiotherapy for Oligometastatic Breast Cancer: A Case Report.
We present a case of durable local control achieved in a patient treated with stereotactic magnetic resonance-guided adaptive radiation therapy (SMART) for an abdominal lymph node in the setting of oligometastatic breast cancer. A 50-year-old woman with a history of triple positive metastatic invasive ductal carcinoma of the left breast, stage IV (T3N2M1), underwent neoadjuvant chemotherapy, mastectomy, adjuvant radiotherapy and maintenance hormonal treatment with HER2 targeted therapies. At 20 months after definitive treatment of her primary, imaging showed an isolated progressive enlargement of lymph nodes between hepatic segment V/IVB and the neck of the pancreas. Radiofrequency ablation was considered, however, this approach was decided not to be optimal due to the proximity to stomach, and pancreatic duct. The patient was treated with SMART for 40 Gray in 5 fractions. Two and a half years later, the patient remains without evidence of disease progression. She experienced Grade 2 acute and late toxicity that was successfully managed with medications. This experience shows that SMART is a feasible and effective treatment to control the abdominal oligometastatic disease for breast cancer
Understanding and Affecting Student Reasoning About Sound Waves
Student learning of sound waves can be helped through the creation of
group-learning classroom materials whose development and design rely on
explicit investigations into student understanding. We describe reasoning in
terms of sets of resources, i.e. grouped building blocks of thinking that are
commonly used in many different settings. Students in our university physics
classes often used sets of resources that were different from the ones we wish
them to use. By designing curriculum materials that ask students to think about
the physics from a different view, we bring about improvement in student
understanding of sound waves. Our curriculum modifications are specific to our
own classes, but our description of student learning is more generally useful
for teachers. We describe how students can use multiple sets of resources in
their thinking, and raise questions that should be considered by both
instructors and researchers.Comment: 23 pages, 4 figures, 3 tables, 28 references, 7 notes. Accepted for
publication in the International Journal of Science Educatio
Investigating Student Understanding of Quantum Mechanics: Spontaneous Models of Conductivity
Students are taught several models of conductivity, both at the introductory
and the advanced level. From early macroscopic models of current flow in
circuits, through the discussion of microscopic particle descriptions of
electrons flowing in an atomic lattice, to the development of microscopic
non-localized band diagram descriptions in advanced physics courses, they need
to be able to distinguish between commonly used, though sometimes
contradictory, physical models. In investigations of student reasoning about
models of conduction, we find that students often are unable to account for the
existence of free electrons in a conductor and create models that lead to
incorrect predictions and responses contradictory to expert descriptions of the
physics. We have used these findings as a guide to creating curriculum
materials that we show can be effective helping students to apply the different
conduction models more effectively.Comment: 12 pages, 9 figures, 36 references and note
Building a collaborative culture in cardiothoracic operating rooms: Pre and postintervention study protocol for evaluation of the implementation of teamSTEPPS training and the impact on perceived psychological safety
IntroductionThe importance of effective communication, a key component of teamwork, is well recognised in the healthcare setting. Establishing a culture that encourages and empowers team members to speak openly in the cardiothoracic (CT) operating room (OR) is necessary to improve patient safety in this high-risk environment.Methods and analysisThis study will take place at Barnes-Jewish Hospital, an academic hospital in affiliation with Washington University School of Medicine located in the USA. All team members participating in cardiac and thoracic OR cases during this 17-month study period will be identified by the primary surgical staff attending on the OR schedule.TeamSTEPPS (Team Strategies and Tools to Enhance Performance and Patient Safety) training course will be taught to all CT OR staff. Before TeamSTEPPS training, staff will respond to a 39-item questionnaire that includes constructs from the Agency for Healthcare Research and Quality Hospital Survey on Patient Safety Culture, Edmondsonâs âMeasure of psychological safetyâ questionnaire, and questionnaires on turnover intentions, job satisfaction and âburnoutâ. The questionnaires will be readministered at 6 and 12 months.The primary outcomes to be assessed include the perceived psychological safety of CT OR team members, the overall effect of TeamSTEPPS on burnout and job satisfaction, and observed turnover rate among the OR nurses. As secondary outcomes, we will be assessing self-reported rates of medical error and near misses in the ORs with a questionnaire at the end of each case.Ethics and disseminationEthics approval is not indicated as this project does not meet the federal definitions of research requiring the oversight of the Institutional Review Board (IRB). Patient health information (PHI) will not be generated during the implementation of this project. Results of the trial will be made accessible to the public when published in a peer-reviewed journal following the completion of the study.</jats:sec
Evaluation of ADCP wave, WAVEWATCH III and HF radar data on the GBR
Wave climate can have a very significant impact on the dynamics of the near-coastal oceans, including geomorphology and currents. This study is a preliminary investigation of the
suitability and compatibility of a wave-capable Acoustic Doppler Current Profiler (ADCP) mooring, an HF ocean radar system and the numerical model WAVEWATCH III (WW3), with
the focus on the area of the Capricorn and Bunker Groups of reefs and islands, Australia
Online Adaptive Radiation Therapy: Implementation of a New Process of Care.
Onboard magnetic resonance imaging (MRI) guided radiotherapy is now clinically available in nine centers in the world. This technology has facilitated the clinical implementation of online adaptive radiotherapy (OART), or the ability to alter the daily treatment plan based on tumor and anatomical changes in real-time while the patient is on the treatment table. However, due to the time sensitive nature of OART, implementation in a large and busy clinic has many potential obstacles as well as patient-related safety considerations. In this work, we have described the implementation of this new process of care in the Department of Radiation Oncology at the University of California, Los Angeles (UCLA). We describe the rationale, the initial challenges such as treatment time considerations, technical issues during the process of re-contouring, re-optimization, quality assurance, as well as our current solutions to overcome these challenges. In addition, we describe the implementation of a coverage system with a physician of the day as well as online planners (physicists or dosimetrists) to oversee each OART treatment with patient-specific 'hand-off' directives from the patient's treating physician. The purpose of this effort is to streamline the process without compromising treatment quality and patient safety. As more MRI-guided radiotherapy programs come online, we hope that our experience can facilitate successful adoption of OART in a way that maximally benefits the patient
Hydrophilic polymer embolism identified in brain tumor specimens following Wada testing: A report of 2 cases
Hydrophilic polymers are commonly used as coatings on intravascular medical devices. As intravascular pro-cedures continue to increase in frequency, the risk of embolization of this material throughout the body has become evident. These emboli may be discovered incidentally but can result in serious complications includ-ing death. Here, we report the first two cases of hydrophilic polymer embolism (HPE) identified on brain tu-mor resection following Wada testing. One patient experienced multifocal vascular complications and diffuse cerebral edema, while the other had an uneventful postoperative course. Wada testing is frequently per-formed during preoperative planning prior to epilepsy surgery or the resection of tumors in eloquent brain regions. These cases demonstrate the need for increased recognition of this histologic finding to enable fur-ther correlation with clinical outcomes
Evaluation of a new airborne microwave remote sensing radiometer by measuring the salinity gradients across the shelf of the Great Barrier Reef lagoon
Over the last ten years, some operational airborne remote sensing systems have become available for mapping surface salinity over large areas in near real time. A new dual-polarized Polarimetric L-band Multibeam Radiometer (PLMR) has been developed to improve accuracy and precision when compared with previous instrument generations. This paper reports on the first field evaluation of the performance of the PLMR by measuring salinity gradients in the central Great Barrier Reef. Before calibration, the raw salinity values of the PLMR and conductivity-temperature-depth (CTD) differed by 3-6 psu. The calibration, which uses in situ salinity data to remove long-term drifts in the PLMR as well as environmental effects such as surface roughness and radiation from the sky and atmosphere, was carried out by equating the means of the PLMR and CTD salinity data over a subsection of the transect, after which 85% of the salinity values between the PLMR and CTD are within 0.1 psu along the complete transect. From offshore to inshore across the shelf, the PLMR shows an average cross-shelf salinity increase of about 0.4 psu and a decrease of 2 psu over the inshore 20 km at -19deg S (around Townsville) and -18deg S (around Lucinda), respectively. The average cross-shelf salinity increase was 0.3 psu for the offshore 100 km over all transects. These results are consistent with the in situ CTD results. This survey shows that PLMR provided an effective method of rapidly measuring the surface salinity in near real time when a calibration could be made
- âŠ