296 research outputs found

    Locally induced quantum interference in scanning gate experiments

    Full text link
    We present conductance measurements of a ballistic circular stadium influenced by a scanning gate. When the tip depletes the electron gas below, we observe very pronounced and regular fringes covering the entire stadium. The fringes correspond to transmitted modes in constrictions formed between the tip-induced potential and the boundaries of the stadium. Moving the tip and counting the fringes gives us exquisite control over the transmission of these constrictions. We use this control to form a quantum ring with a specific number of modes in each arm showing the Aharonov-Bohm effect in low-field magnetoconductance measurements.Comment: 10 pages, 4 figure

    The fission yeast FANCM ortholog directs non-crossover recombination during meiosis

    Get PDF
    Peer reviewedPostprin

    Scanning-gate-induced effects and spatial mapping of a cavity

    Full text link
    Tailored electrostatic potentials are the foundation of scanning gate microscopy. We present several aspects of the tip-induced potential on the two-dimensional electron gas. First, we give methods on how to estimate the size of the tip-induced potential. Then, a ballistic cavity is formed and studied as a function of the bias-voltage of the metallic top gates and probed with the tip-induced potential. It is shown how the potential of the cavity changes by tuning the system to a regime where conductance quantization in the constrictions formed by the tip and the top gates occurs. This conductance quantization leads to a unprecedented rich fringe pattern over the entire structure. Finally, the effect of electrostatic screening of the metallic top gates is discussed.Comment: 10 pages, 6 figure

    Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks, and generate useful guidelines for the design of synthetic gene circuits.This work was funded by the UK Engineering and Physical Sciences Research Council, grant number EP/I017445/1

    Scanning gate experiments: from strongly to weakly invasive probes

    Full text link
    An open resonator fabricated in a two-dimensional electron gas is used to explore the transition from strongly invasive scanning gate microscopy to the perturbative regime of weak tip-induced potentials. With the help of numerical simulations that faithfully reproduce the main experimental findings, we quantify the extent of the perturbative regime in which the tip-induced conductance change is unambiguously determined by properties of the unperturbed system. The correspondence between the experimental and numerical results is established by analyzing the characteristic length scale and the amplitude modulation of the conductance change. In the perturbative regime, the former is shown to assume a disorder-dependent maximum value, while the latter linearly increases with the strength of a weak tip potential.Comment: 11 pages, 7 figure

    Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation

    Get PDF
    CO<sub>2</sub> and carbon cycle changes in the land, ocean and atmosphere are investigated using the comprehensive carbon cycle-climate model NCAR CSM1.4-carbon. Ensemble simulations are forced with freshwater perturbations applied at the North Atlantic and Southern Ocean deep water formation sites under pre-industrial climate conditions. As a result, the Atlantic Meridional Overturning Circulation reduces in each experiment to varying degrees. The physical climate fields show changes qualitatively in agreement with results documented in the literature, but there is a clear distinction between northern and southern perturbations. Changes in the physical variables, in turn, affect the land and ocean biogeochemical cycles and cause a reduction, or an increase, in the atmospheric CO<sub>2</sub> concentration by up to 20 ppmv, depending on the location of the perturbation. In the case of a North Atlantic perturbation, the land biosphere reacts with a strong reduction in carbon stocks in some tropical locations and in high northern latitudes. In contrast, land carbon stocks tend to increase in response to a southern perturbation. The ocean is generally a sink of carbon although large reorganizations occur throughout various basins. The response of the land biosphere is strongest in the tropical regions due to a shift of the Intertropical Convergence Zone. The carbon fingerprints of this shift, either to the south or to the north depending on where the freshwater is applied, can be found most clearly in South America. For this reason, a compilation of various paleoclimate proxy records of Younger Dryas precipitation changes are compared with our model results. The proxy records, in general, show good agreement with the model's response to a North Atlantic freshwater perturbation

    Electrolyte gate dependent high-frequency measurement of graphene field-effect transistor for sensing applications

    Full text link
    We performed radiofrequency (RF) reflectometry measurements at 2.4 GHz on electrolyte-gated graphene field-effect transistors (GFETs) utilizing a tunable stub-matching circuit for impedance matching. We demonstrate that the gate voltage dependent RF resistivity of graphene can be deduced even in the presence of the electrolyte which is in direct contact with the graphene layer. The RF resistivity is found to be consistent with its DC counterpart in the full gate voltage range. Furthermore, in order to access the potential of high-frequency sensing for applications, we demonstrate time-dependent gating in solution with nanosecond time resolution.Comment: 14 pages, 4 figure

    Scaling of 1/f noise in tunable break-junctions

    Full text link
    We have studied the 1/f1/f voltage noise of gold nano-contacts in electromigrated and mechanically controlled break-junctions having resistance values RR that can be tuned from 10 Ω\Omega (many channels) to 10 kΩ\Omega (single atom contact). The noise is caused by resistance fluctuations as evidenced by the SV∝V2S_V\propto V^2 dependence of the power spectral density SVS_V on the applied DC voltage VV. As a function of RR the normalized noise SV/V2S_V/V^2 shows a pronounced cross-over from ∝R3\propto R^3 for low-ohmic junctions to ∝R1.5\propto R^{1.5} for high-ohmic ones. The measured powers of 3 and 1.5 are in agreement with 1/f1/f-noise generated in the bulk and reflect the transition from diffusive to ballistic transport

    The multilevel trigger system of the DIRAC experiment

    Get PDF
    The multilevel trigger system of the DIRAC experiment at CERN is presented. It includes a fast first level trigger as well as various trigger processors to select events with a pair of pions having a low relative momentum typical of the physical process under study. One of these processors employs the drift chamber data, another one is based on a neural network algorithm and the others use various hit-map detector correlations. Two versions of the trigger system used at different stages of the experiment are described. The complete system reduces the event rate by a factor of 1000, with efficiency ≄\geq95% of detecting the events in the relative momentum range of interest.Comment: 21 pages, 11 figure
    • 

    corecore