997 research outputs found

    Diffractive Meson Production and the Quark-Pomeron Coupling

    Get PDF
    Diffractive meson production at HERA offers interesting possibilities to investigate diffractive processes and thus to learn something about the properties of the pomeron. The most succesful phenomenological description of the pomeron so far assumes it to couple like a C=+1C = +1 isoscalar photon to single quarks. This coupling leads, however, to problems for exclusive diffractive reactions. We propose a new phenomenological pomeron vertex, which leads to very good fits to the known data, but avoids the problems of the old vertex.Comment: 20 pages, latex with uuencoded postscript, revised versio

    Protein sequence and structure: Is one more fundamental than the other?

    Full text link
    We argue that protein native state structures reside in a novel "phase" of matter which confers on proteins their many amazing characteristics. This phase arises from the common features of all globular proteins and is characterized by a sequence-independent free energy landscape with relatively few low energy minima with funnel-like character. The choice of a sequence that fits well into one of these predetermined structures facilitates rapid and cooperative folding. Our model calculations show that this novel phase facilitates the formation of an efficient route for sequence design starting from random peptides.Comment: 7 pages, 4 figures, to appear in J. Stat. Phy

    Transition from BCS pairing to Bose-Einstein condensation in low-density asymmetric nuclear matter

    Get PDF
    We study the isospin-singlet neutron-proton pairing in bulk nuclear matter as a function of density and isospin asymmetry within the BCS formalism. In the high-density, weak-coupling regime the neutron-proton paired state is strongly suppressed by a minor neutron excess. As the system is diluted, the BCS state with large, overlapping Cooper pairs evolves smoothly into a Bose-Einstein condensate of tightly bound neutron-proton pairs (deuterons). In the resulting low-density system a neutron excess is ineffective in quenching the pair correlations because of the large spatial separation of the deuterons and neutrons. As a result, the Bose-Einstein condensation of deuterons is weakly affected by an additional gas of free neutrons even at very large asymmetries.Comment: 17 pages, uncluding 7 figures, PRC in pres

    Small BGK waves and nonlinear Landau damping

    Full text link
    Consider 1D Vlasov-poisson system with a fixed ion background and periodic condition on the space variable. First, we show that for general homogeneous equilibria, within any small neighborhood in the Sobolev space W^{s,p} (p>1,s<1+(1/p)) of the steady distribution function, there exist nontrivial travelling wave solutions (BGK waves) with arbitrary minimal period and traveling speed. This implies that nonlinear Landau damping is not true in W^{s,p}(s<1+(1/p)) space for any homogeneous equilibria and any spatial period. Indeed, in W^{s,p} (s<1+(1/p)) neighborhood of any homogeneous state, the long time dynamics is very rich, including travelling BGK waves, unstable homogeneous states and their possible invariant manifolds. Second, it is shown that for homogeneous equilibria satisfying Penrose's linear stability condition, there exist no nontrivial travelling BGK waves and unstable homogeneous states in some W^{s,p} (p>1,s>1+(1/p)) neighborhood. Furthermore, when p=2,we prove that there exist no nontrivial invariant structures in the H^{s} (s>(3/2)) neighborhood of stable homogeneous states. These results suggest the long time dynamics in the W^{s,p} (s>1+(1/p)) and particularly, in the H^{s} (s>(3/2)) neighborhoods of a stable homogeneous state might be relatively simple. We also demonstrate that linear damping holds for initial perturbations in very rough spaces, for linearly stable homogeneous state. This suggests that the contrasting dynamics in W^{s,p} spaces with the critical power s=1+(1/p) is a trully nonlinear phenomena which can not be traced back to the linear level

    Land use classification using deep multitask networks

    Get PDF

    Measurements of the Q2Q^2-Dependence of the Proton and Neutron Spin Structure Functions g1p and g1n

    Get PDF
    The structure functions g1p and g1n have been measured over the range 0.014 < x < 0.9 and 1 < Q2 < 40 GeV2 using deep-inelastic scattering of 48 GeV longitudinally polarized electrons from polarized protons and deuterons. We find that the Q2 dependence of g1p (g1n) at fixed x is very similar to that of the spin-averaged structure function F1p (F1n). From a NLO QCD fit to all available data we find Γ1pΓ1n=0.176±0.003±0.007\Gamma_1^p - \Gamma_1^n =0.176 \pm 0.003 \pm 0.007 at Q2=5 GeV2, in agreement with the Bjorken sum rule prediction of 0.182 \pm 0.005.Comment: 17 pages, 3 figures. Submitted to Physics Letters

    Fluctuations in a general preferential attachment model via Stein's method

    Get PDF
    We consider a general preferential attachment model, where the probability that a newly arriving vertex connects to an older vertex is proportional to a sublinear function of the indegree of the older vertex at that time. It is well known that the distribution of a uniformly chosen vertex converges to a limiting distribution. Depending on the parameters, this model can show power law, but also stretched exponential behaviour. Using Stein's method we provide rates of convergence for the total variation distance. Our proof uses the fact that the limiting distribution is the stationary distribution of a Markov chain together with the generator method of Barbour

    Ginzburg-Landau functional for nearly antiferromagnetic perfect and disordered Kondo lattices

    Full text link
    Interplay between Kondo effect and trends to antiferromagnetic and spin glass ordering in perfect and disordered bipartite Kondo lattices is considered. Ginzburg-Landau equation is derived from the microscopic effective action written in three mode representation (Kondo screening, antiferromagnetic correlations and spin liquid correlations). The problem of local constraint is resolved by means of Popov-Fedotov representation for localized spin operators. It is shown that the Kondo screening enhances the trend to a spin liquid crossover and suppresses antiferromagnetic ordering in perfect Kondo lattices and spin glass ordering in doped Kondo lattices. The modified Doniach's diagram is constructed, and possibilities of going beyond the mean field approximation are discussed.Comment: 18 pages, RevTeX, 7 EPS figures include

    Measurement of the Proton and Deuteron Spin Structure Functions g2 and Asymmetry A2

    Full text link
    We have measured the spin structure functions g2p and g2d and the virtual photon asymmetries A2p and A2d over the kinematic range 0.02 < x < 0.8 and 1.0 < Q^2 < 30(GeV/c)^2 by scattering 38.8 GeV longitudinally polarized electrons from transversely polarized NH3 and 6LiD targets.The absolute value of A2 is significantly smaller than the sqrt{R} positivity limit over the measured range, while g2 is consistent with the twist-2 Wandzura-Wilczek calculation. We obtain results for the twist-3 reduced matrix elements d2p, d2d and d2n. The Burkhardt-Cottingham sum rule integral - int(g2(x)dx) is reported for the range 0.02 < x < 0.8.Comment: 12 pages, 4 figures, 1 tabl
    corecore