22,263 research outputs found

    Realistic Magnetohydrodynamical Simulation of Solar Local Supergranulation

    Full text link
    Three-dimensional numerical simulations of solar surface magnetoconvection using realistic model physics are conducted. The thermal structure of convective motions into the upper radiative layers of the photosphere, the main scales of convective cells and the penetration depths of convection are investigated. We take part of the solar photosphere with size of 60x60 Mm in horizontal direction and by depth 20 Mm from level of the visible solar surface. We use a realistic initial model of the Sun and apply equation of state and opacities of stellar matter. The equations of fully compressible radiation magnetohydrodynamics with dynamical viscosity and gravity are solved. We apply: 1) conservative TVD difference scheme for the magnetohydrodynamics, 2) the diffusion approximation for the radiative transfer, 3) dynamical viscosity from subgrid scale modeling. In simulation we take uniform two-dimesional grid in gorizontal plane and nonuniform grid in vertical direction with number of cells 600x600x204. We use 512 processors with distributed memory multiprocessors on supercomputer MVS-100k in the Joint Computational Centre of the Russian Academy of Sciences.Comment: 6 pages, 5 figures, submitted to the proceedings of the GONG 2008 / SOHO XXI conferenc

    INTERGRANULAR BRITTLENESS STUDIES IN W USING AUGER SPECTROSCOPY.

    Full text link

    Solar Oscillations and Convection: II. Excitation of Radial Oscillations

    Full text link
    Solar p-mode oscillations are excited by the work of stochastic, non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the expression for the radial mode excitation rate derived by Nordlund and Stein (Paper I) using numerical simulations of near surface solar convection. We first apply this expression to the three radial modes of the simulation and obtain good agreement between the predicted excitation rate and the actual mode damping rates as determined from their energies and the widths of their resolved spectral profiles. We then apply this expression for the mode excitation rate to the solar modes and obtain excellent agreement with the low l damping rates determined from GOLF data. Excitation occurs close to the surface, mainly in the intergranular lanes and near the boundaries of granules (where turbulence and radiative cooling are large). The non-adiabatic pressure fluctuations near the surface are produced by small instantaneous local imbalances between the divergence of the radiative and convective fluxes near the solar surface. Below the surface, the non-adiabatic pressure fluctuations are produced primarily by turbulent pressure fluctuations (Reynolds stresses). The frequency dependence of the mode excitation is due to effects of the mode structure and the pressure fluctuation spectrum. Excitation is small at low frequencies due to mode properties -- the mode compression decreases and the mode mass increases at low frequency. Excitation is small at high frequencies due to the pressure fluctuation spectrum -- pressure fluctuations become small at high frequencies because they are due to convection which is a long time scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue). 17 pages, 27 figures, some with reduced resolution -- high resolution versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048

    Efficient formalism for large scale ab initio molecular dynamics based on time-dependent density functional theory

    Get PDF
    A new "on the fly" method to perform Born-Oppenheimer ab initio molecular dynamics (AIMD) is presented. Inspired by Ehrenfest dynamics in time-dependent density functional theory, the electronic orbitals are evolved by a Schroedinger-like equation, where the orbital time derivative is multiplied by a parameter. This parameter controls the time scale of the fictitious electronic motion and speeds up the calculations with respect to standard Ehrenfest dynamics. In contrast to other methods, wave function orthogonality needs not be imposed as it is automatically preserved, which is of paramount relevance for large scale AIMD simulations.Comment: 5 pages, 3 color figures, revtex4 packag

    Coupling of Transport and Chemical Processes in Catalytic Combustion

    Get PDF
    Catalytic combustors have demonstrated the ability to operate efficiently over a much wider range of fuel air ratios than are imposed by the flammability limits of conventional combustors. Extensive commercial use however needs the following: (1) the design of a catalyst with low ignition temperature and high temperature stability, (2) reducing fatigue due to thermal stresses during transient operation, and (3) the development of mathematical models that can be used as design optimization tools to isolate promising operating ranges for the numerous operating parameters. The current program of research involves the development of a two dimensional transient catalytic combustion model and the development of a new catalyst with low temperature light-off and high temperature stablity characteristics

    Entanglement in bosonic systems

    Full text link
    We present a technique to resolve a Gaussian density matrix and its time evolution through known expectation values in position and momentum. Further we find the full spectrum of this density matrix and apply the technique to a chain of harmonic oscillators to find agreement with conformal field theory in this domain. We also observe that a non-conformal state has a divergent entanglement entropy.Comment: 7 pages, 6 figure

    Polarization and Charge Transfer in the Hydration of Chloride Ions

    Full text link
    A theoretical study of the structural and electronic properties of the chloride ion and water molecules in the first hydration shell is presented. The calculations are performed on an ensemble of configurations obtained from molecular dynamics simulations of a single chloride ion in bulk water. The simulations utilize the polarizable AMOEBA force field for trajectory generation, and MP2-level calculations are performed to examine the electronic structure properties of the ions and surrounding waters in the external field of more distant waters. The ChelpG method is employed to explore the effective charges and dipoles on the chloride ions and first-shell waters. The Quantum Theory of Atoms in Molecules (QTAIM) is further utilized to examine charge transfer from the anion to surrounding water molecules. From the QTAIM analysis, 0.2 elementary charges are transferred from the ion to the first-shell water molecules. The default AMOEBA model overestimates the average dipole moment magnitude of the ion compared with the estimated quantum mechanical value. The average magnitude of the dipole moment of the water molecules in the first shell treated at the MP2 level, with the more distant waters handled with an AMOEBA effective charge model, is 2.67 D. This value is close to the AMOEBA result for first-shell waters (2.72 D) and is slightly reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment of the water molecules in the first solvation shell is most strongly affected by the local water-water interactions and hydrogen bonds with the second solvation shell, rather than by interactions with the ion.Comment: Slight revision, in press at J. Chem. Phy

    Simulations of Oscillation Modes of the Solar Convection Zone

    Get PDF
    We use the three-dimensional hydrodynamic code of Stein and Nordlund to realistically simulate the upper layers of the solar convection zone in order to study physical characteristics of solar oscillations. Our first result is that the properties of oscillation modes in the simulation closely match the observed properties. Recent observations from SOHO/MDI and GONG have confirmed the asymmetry of solar oscillation line profiles, initially discovered by Duvall et al. In this paper we compare the line profiles in the power spectra of the Doppler velocity and continuum intensity oscillations from the SOHO/MDI observations with the simulation. We also compare the phase differences between the velocity and intensity data. We have found that the simulated line profiles are asymmetric and have the same asymmetry reversal between velocity and intensity as observed. The phase difference between the velocity and intensity signals is negative at low frequencies and jumps in the vicinity of modes as is also observed. Thus, our numerical model reproduces the basic observed properties of solar oscillations, and allows us to study the physical properties which are not observed.Comment: Accepted for publication in ApJ Letter
    corecore