22,263 research outputs found
Realistic Magnetohydrodynamical Simulation of Solar Local Supergranulation
Three-dimensional numerical simulations of solar surface magnetoconvection
using realistic model physics are conducted. The thermal structure of
convective motions into the upper radiative layers of the photosphere, the main
scales of convective cells and the penetration depths of convection are
investigated. We take part of the solar photosphere with size of 60x60 Mm in
horizontal direction and by depth 20 Mm from level of the visible solar
surface. We use a realistic initial model of the Sun and apply equation of
state and opacities of stellar matter. The equations of fully compressible
radiation magnetohydrodynamics with dynamical viscosity and gravity are solved.
We apply: 1) conservative TVD difference scheme for the magnetohydrodynamics,
2) the diffusion approximation for the radiative transfer, 3) dynamical
viscosity from subgrid scale modeling. In simulation we take uniform
two-dimesional grid in gorizontal plane and nonuniform grid in vertical
direction with number of cells 600x600x204. We use 512 processors with
distributed memory multiprocessors on supercomputer MVS-100k in the Joint
Computational Centre of the Russian Academy of Sciences.Comment: 6 pages, 5 figures, submitted to the proceedings of the GONG 2008 /
SOHO XXI conferenc
Solar Oscillations and Convection: II. Excitation of Radial Oscillations
Solar p-mode oscillations are excited by the work of stochastic,
non-adiabatic, pressure fluctuations on the compressive modes. We evaluate the
expression for the radial mode excitation rate derived by Nordlund and Stein
(Paper I) using numerical simulations of near surface solar convection. We
first apply this expression to the three radial modes of the simulation and
obtain good agreement between the predicted excitation rate and the actual mode
damping rates as determined from their energies and the widths of their
resolved spectral profiles. We then apply this expression for the mode
excitation rate to the solar modes and obtain excellent agreement with the low
l damping rates determined from GOLF data. Excitation occurs close to the
surface, mainly in the intergranular lanes and near the boundaries of granules
(where turbulence and radiative cooling are large). The non-adiabatic pressure
fluctuations near the surface are produced by small instantaneous local
imbalances between the divergence of the radiative and convective fluxes near
the solar surface. Below the surface, the non-adiabatic pressure fluctuations
are produced primarily by turbulent pressure fluctuations (Reynolds stresses).
The frequency dependence of the mode excitation is due to effects of the mode
structure and the pressure fluctuation spectrum. Excitation is small at low
frequencies due to mode properties -- the mode compression decreases and the
mode mass increases at low frequency. Excitation is small at high frequencies
due to the pressure fluctuation spectrum -- pressure fluctuations become small
at high frequencies because they are due to convection which is a long time
scale phenomena compared to the dominant p-mode periods.Comment: Accepted for publication in ApJ (scheduled for Dec 10, 2000 issue).
17 pages, 27 figures, some with reduced resolution -- high resolution
versions available at http://www.astro.ku.dk/~aake/astro-ph/0008048
Efficient formalism for large scale ab initio molecular dynamics based on time-dependent density functional theory
A new "on the fly" method to perform Born-Oppenheimer ab initio molecular
dynamics (AIMD) is presented. Inspired by Ehrenfest dynamics in time-dependent
density functional theory, the electronic orbitals are evolved by a
Schroedinger-like equation, where the orbital time derivative is multiplied by
a parameter. This parameter controls the time scale of the fictitious
electronic motion and speeds up the calculations with respect to standard
Ehrenfest dynamics. In contrast to other methods, wave function orthogonality
needs not be imposed as it is automatically preserved, which is of paramount
relevance for large scale AIMD simulations.Comment: 5 pages, 3 color figures, revtex4 packag
Coupling of Transport and Chemical Processes in Catalytic Combustion
Catalytic combustors have demonstrated the ability to operate efficiently over a much wider range of fuel air ratios than are imposed by the flammability limits of conventional combustors. Extensive commercial use however needs the following: (1) the design of a catalyst with low ignition temperature and high temperature stability, (2) reducing fatigue due to thermal stresses during transient operation, and (3) the development of mathematical models that can be used as design optimization tools to isolate promising operating ranges for the numerous operating parameters. The current program of research involves the development of a two dimensional transient catalytic combustion model and the development of a new catalyst with low temperature light-off and high temperature stablity characteristics
Entanglement in bosonic systems
We present a technique to resolve a Gaussian density matrix and its time
evolution through known expectation values in position and momentum. Further we
find the full spectrum of this density matrix and apply the technique to a
chain of harmonic oscillators to find agreement with conformal field theory in
this domain. We also observe that a non-conformal state has a divergent
entanglement entropy.Comment: 7 pages, 6 figure
Polarization and Charge Transfer in the Hydration of Chloride Ions
A theoretical study of the structural and electronic properties of the
chloride ion and water molecules in the first hydration shell is presented. The
calculations are performed on an ensemble of configurations obtained from
molecular dynamics simulations of a single chloride ion in bulk water. The
simulations utilize the polarizable AMOEBA force field for trajectory
generation, and MP2-level calculations are performed to examine the electronic
structure properties of the ions and surrounding waters in the external field
of more distant waters. The ChelpG method is employed to explore the effective
charges and dipoles on the chloride ions and first-shell waters. The Quantum
Theory of Atoms in Molecules (QTAIM) is further utilized to examine charge
transfer from the anion to surrounding water molecules.
From the QTAIM analysis, 0.2 elementary charges are transferred from the ion
to the first-shell water molecules. The default AMOEBA model overestimates the
average dipole moment magnitude of the ion compared with the estimated quantum
mechanical value. The average magnitude of the dipole moment of the water
molecules in the first shell treated at the MP2 level, with the more distant
waters handled with an AMOEBA effective charge model, is 2.67 D. This value is
close to the AMOEBA result for first-shell waters (2.72 D) and is slightly
reduced from the bulk AMOEBA value (2.78 D). The magnitude of the dipole moment
of the water molecules in the first solvation shell is most strongly affected
by the local water-water interactions and hydrogen bonds with the second
solvation shell, rather than by interactions with the ion.Comment: Slight revision, in press at J. Chem. Phy
Simulations of Oscillation Modes of the Solar Convection Zone
We use the three-dimensional hydrodynamic code of Stein and Nordlund to
realistically simulate the upper layers of the solar convection zone in order
to study physical characteristics of solar oscillations. Our first result is
that the properties of oscillation modes in the simulation closely match the
observed properties. Recent observations from SOHO/MDI and GONG have confirmed
the asymmetry of solar oscillation line profiles, initially discovered by
Duvall et al. In this paper we compare the line profiles in the power spectra
of the Doppler velocity and continuum intensity oscillations from the SOHO/MDI
observations with the simulation. We also compare the phase differences between
the velocity and intensity data. We have found that the simulated line profiles
are asymmetric and have the same asymmetry reversal between velocity and
intensity as observed. The phase difference between the velocity and intensity
signals is negative at low frequencies and jumps in the vicinity of modes as is
also observed. Thus, our numerical model reproduces the basic observed
properties of solar oscillations, and allows us to study the physical
properties which are not observed.Comment: Accepted for publication in ApJ Letter
- …