1,054 research outputs found

    The McCarran Amendment and the Administration of Tribal Reserved Water Rights

    Get PDF

    Introduction: Water Law

    Get PDF
    Also includes map of border of Mexico with the states of New Mexico and Texa

    CCAAT/Enhancer-Binding Protein γ Is a Critical Regulator of IL-1β-Induced IL-6 Production in Alveolar Epithelial Cells

    Get PDF
    CCAAT/enhancer binding protein γ (C/EBPγ) is a member of the C/EBP family of transcription factors, which lacks known activation domains. C/EBPγ was originally described as an inhibitor of C/EBP transactivation potential. However, previous study demonstrates that C/EBPγ augments the C/EBPβ stimulatory activity in lipopolysaccharide induction of IL-6 promoter in a B lymphoblast cell line. These data indicate a complexing functional role for C/EBPγ in regulating gene expression. Furthermore, the expression and function of C/EBPγ during inflammation are still largely unknown. In this study, we demonstrate that C/EBPγ activation was induced by IL-1β treatment in lung epithelial cells. Importantly, we demonstrate for the first time that C/EBPγ plays a critical role in regulating IL-1β-induced IL-6 expression in both mouse primary alveolar type II epithelial cells and a lung epithelial cell line, MLE12. We further provide the evidence that C/EBPγ inhibits IL-6 expression by inhibiting C/EBPβ but not NF-κB stimulatory activity in MLE12 cells. These findings suggest that C/EBPγ is a key transcription factor that regulates the IL-6 expression in alveolar epithelial cells, and may play an important regulatory role in lung inflammatory responses

    Transcriptome Profiling of Whole Blood Cells Identifies PLEK2 and C1QB in Human Melanoma

    Get PDF
    Developing analytical methodologies to identify biomarkers in easily accessible body fluids is highly valuable for the early diagnosis and management of cancer patients. Peripheral whole blood is a "nucleic acid-rich" and "inflammatory cell-rich" information reservoir and represents systemic processes altered by the presence of cancer cells.We conducted transcriptome profiling of whole blood cells from melanoma patients. To overcome challenges associated with blood-based transcriptome analysis, we used a PAXgeneâ„¢ tube and NuGEN Ovationâ„¢ globin reduction system. The combined use of these systems in microarray resulted in the identification of 78 unique genes differentially expressed in the blood of melanoma patients. Of these, 68 genes were further analyzed by quantitative reverse transcriptase PCR using blood samples from 45 newly diagnosed melanoma patients (stage I to IV) and 50 healthy control individuals. Thirty-nine genes were verified to be differentially expressed in blood samples from melanoma patients. A stepwise logit analysis selected eighteen 2-gene signatures that distinguish melanoma from healthy controls. Of these, a 2-gene signature consisting of PLEK2 and C1QB led to the best result that correctly classified 93.3% melanoma patients and 90% healthy controls. Both genes were upregulated in blood samples of melanoma patients from all stages. Further analysis using blood fractionation showed that CD45(-) and CD45(+) populations were responsible for the altered expression levels of PLEK2 and C1QB, respectively.The current study provides the first analysis of whole blood-based transcriptome biomarkers for malignant melanoma. The expression of PLEK2, the strongest gene to classify melanoma patients, in CD45(-) subsets illustrates the importance of analyzing whole blood cells for biomarker studies. The study suggests that transcriptome profiling of blood cells could be used for both early detection of melanoma and monitoring of patients for residual disease
    • …
    corecore