55 research outputs found

    Cooperative virulence can emerge via horizontal gene transfer but is stabilized by transmission

    Get PDF
    Intestinal inflammation fuels Salmonella Typhimurium ( S .Tm) transmission despite a fitness cost associated with the expression of virulence. Cheater mutants can emerge that profit from inflammation without enduring this cost. Intestinal virulence in S .Tm is therefore a cooperative trait, and its evolution a conundrum. Horizontal gene transfer (HGT) of cooperative alleles may facilitate the emergence of cooperative virulence, despite its instability. To test this hypothesis, we cloned hilD , coding for a master regulator of virulence, into a conjugative plasmid that is highly transferrable during intestinal colonization. We demonstrate that virulence can emerge by hilD transfer between avirulent strains in vivo . However, this was indeed unstable and hilD mutant cheaters arose within a few days. The timing of cheater emergence depended on the cost. We further show that stabilization of cooperative virulence in S .Tm is dependent on transmission dynamics, strengthened by population bottlenecks, leading cheaters to extinction and allowing cooperators to thrive

    Pathogen invasion-dependent tissue reservoirs and plasmid-encoded antibiotic degradation boost plasmid spread in the gut

    Get PDF
    Many plasmids encode antibiotic resistance genes. Through conjugation, plasmids can be rapidly disseminated. Previous work identified gut luminal donor/recipient blooms and tissue-lodged plasmid-bearing persister cells of the enteric pathogen; Salmonella enterica; serovar Typhimurium (; S; .Tm) that survive antibiotic therapy in host tissues, as factors promoting plasmid dissemination among Enterobacteriaceae. However, the buildup of tissue reservoirs and their contribution to plasmid spread await experimental demonstration. Here, we asked if re-seeding-plasmid acquisition-invasion cycles by; S; .Tm could serve to diversify tissue-lodged plasmid reservoirs, and thereby promote plasmid spread. Starting with intraperitoneal mouse infections, we demonstrate that; S; .Tm cells re-seeding the gut lumen initiate clonal expansion. Extended spectrum beta-lactamase (ESBL) plasmid-encoded gut luminal antibiotic degradation by donors can foster recipient survival under beta-lactam antibiotic treatment, enhancing transconjugant formation upon re-seeding.; S; .Tm transconjugants can subsequently re-enter host tissues introducing the new plasmid into the tissue-lodged reservoir. Population dynamics analyses pinpoint recipient migration into the gut lumen as rate-limiting for plasmid transfer dynamics in our model. Priority effects may be a limiting factor for reservoir formation in host tissues. Overall, our proof-of-principle data indicates that luminal antibiotic degradation and shuttling between the gut lumen and tissue-resident reservoirs can promote the accumulation and spread of plasmids within a host over time

    Influence of IFNL3/4 polymorphisms on the incidence of cytomegalovirus infection after solid-organ transplantation

    Get PDF
    Background. Polymorphisms in the interferon-λ (IFNL) 3/4 region have been associated with reduced hepatitis C virus clearance. We explored the role of such polymorphisms on the incidence of CMV infection in solid-organ transplant (SOT) recipients. Methods. Caucasian patients participating in the Swiss Transplant Cohort Study in 2008-2011 were included. A novel functional TT/-G polymorphism (rs368234815) in the CpG region upstream of IFNL3 was investigated. Results. A total of 840 SOT recipients at risk for CMV were included, among whom 373 (44%) received antiviral prophylaxis. The 12-months cumulative incidence of CMV replication and disease were 0.44 and 0.08, respectively. Patient homozygous for the minor rs368234815 allele (-G/-G) tended to have a higher cumulative incidence of CMV replication (SHR=1.30 [95%CI 0.97-1.74], P=0.07) compared to other patients (TT/TT or TT/-G). The association was significant among patients followed by a preemptive approach (SHR=1.46 [1.01-2.12], P=0.047), especially in patients receiving an organ from a seropositive donor (D+, SHR=1.92 [95%CI 1.30-2.85], P=0.001), but not among those who received antiviral prophylaxis (SHR=1.13 [95%CI 0.70-1.83], P=0.6). These associations remained significant in multivariate competing risk regression models. Conclusions. Polymorphisms in the IFNL3/4 region influence susceptibility to CMV replication in SOT recipients, particularly in patients not receiving antiviral prophylaxi

    IL1B and DEFB1 Polymorphisms Increase Susceptibility to Invasive Mold Infection After Solid-Organ Transplantation

    Get PDF
    Background. Single-nucleotide polymorphisms (SNPs) in immune genes have been associated with susceptibility to invasive mold infection (IMI) among hematopoietic stem cell but not solid-organ transplant (SOT) recipients. Methods. Twenty-four SNPs from systematically selected genes were genotyped among 1101 SOT recipients (715 kidney transplant recipients, 190 liver transplant recipients, 102 lung transplant recipients, 79 heart transplant recipients, and 15 recipients of other transplants) from the Swiss Transplant Cohort Study. Association between SNPs and the end point were assessed by log-rank test and Cox regression models. Cytokine production upon Aspergillus stimulation was measured by enzyme-linked immunosorbent assay in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and correlated with relevant genotypes. Results. Mold colonization (n = 45) and proven/probable IMI (n = 26) were associated with polymorphisms in the genes encoding interleukin 1β (IL1B; rs16944; recessive mode, P = .001 for colonization and P = .00005 for IMI, by the log-rank test), interleukin 1 receptor antagonist (IL1RN; rs419598; P = .01 and P = .02, respectively), and β-defensin 1 (DEFB1; rs1800972; P = .001 and P = .0002, respectively). The associations with IL1B and DEFB1 remained significant in a multivariate regression model (P = .002 for IL1B rs16944; P = .01 for DEFB1 rs1800972). The presence of 2 copies of the rare allele of rs16944 or rs419598 was associated with reduced Aspergillus-induced interleukin 1β and tumor necrosis factor α secretion by PBMCs. Conclusions. Functional polymorphisms in IL1B and DEFB1 influence susceptibility to mold infection in SOT recipients. This observation may contribute to individual risk stratificatio

    PTX3 Polymorphisms and Invasive Mold Infections After Solid Organ Transplant

    Get PDF
    Donor PTX3 polymorphisms were shown to influence the risk of invasive aspergillosis among hematopoietic stem cell transplant recipients. Here, we show that PTX3 polymorphisms are independent risk factors for invasive mold infections among 1101 solid organ transplant recipients, thereby strengthening their role in mold infection pathogenesis and patients' risk stratificatio

    Reply to Cunha et al

    Get PDF

    Influence of IFNL3/4 polymorphisms on the incidence of cytomegalovirus infection after solid-organ transplantation

    Get PDF
    BACKGROUND  Polymorphisms in the interferon-λ (IFNL) 3/4 region have been associated with reduced hepatitis C virus clearance. We explored the role of such polymorphisms on the incidence of CMV infection in solid-organ transplant (SOT) recipients. METHODS  Caucasian patients participating in the Swiss Transplant Cohort Study in 2008-2011 were included. A novel functional TT/-G polymorphism (rs368234815) in the CpG region upstream of IFNL3 was investigated. RESULTS  A total of 840 SOT recipients at risk for CMV were included, among whom 373 (44%) received antiviral prophylaxis. The 12-months cumulative incidence of CMV replication and disease were 0.44 and 0.08, respectively. Patient homozygous for the minor rs368234815 allele (-G/-G) tended to have a higher cumulative incidence of CMV replication (SHR=1.30 [95%CI 0.97-1.74], P=0.07) compared to other patients (TT/TT or TT/-G). The association was significant among patients followed by a preemptive approach (SHR=1.46 [1.01-2.12], P=0.047), especially in patients receiving an organ from a seropositive donor (D+, SHR=1.92 [95%CI 1.30-2.85], P=0.001), but not among those who received antiviral prophylaxis (SHR=1.13 [95%CI 0.70-1.83], P=0.6). These associations remained significant in multivariate competing risk regression models. CONCLUSIONS  Polymorphisms in the IFNL3/4 region influence susceptibility to CMV replication in SOT recipients, particularly in patients not receiving antiviral prophylaxis

    Light interception principally drives the understory response to boxelder invasion in riparian forests

    Get PDF
    Since several decades, American boxelder (Acer negundo) is replacing white willow (Salix alba) riparian forests along southern European rivers. This study aims to evaluate the consequences of boxelder invasion on understory community in riparian areas. We determined the understory species richness, composition and biomass in boxelder and white willow stands located in three riparian forests, representative of three rivers with distinct hydrological regimes. We investigated correlation of these variables to soil moisture and particle size, main soil nutrient stocks, potential nitrification and denitrification, tree canopy cover and photosynthetic active radiation (PAR) at the ground level. A greenhouse experiment was then conducted to identify the causal factors responsible for changes in the understory. The effect of soil type, PAR level and water level on the growth and the biomass production of Urtica dioica were examined. A lower plant species richness and biomass, and a modification of community composition were observed for boxelder understory in all sites, regardless of their environmental characteristics. The strongest modification that follows boxelder invasion was the decline in U. dioica, the dominant species of the white willow forest understory. These differences were mainly correlated with a lower incident PAR under boxelder canopy. The greenhouse experiment identified PAR level as the main factor responsible for the changes in U. dioica stem number and biomass. Our results indicate that adult boxelder acts as an ecosystem engineer that decreases light availability. The opportunistic invasion by boxelder leads to important understory changes, which could alter riparian ecosystem functioning

    The developmental impact of prenatal stress, prenatal dexamethasone and postnatal social stress on physiology, behaviour and neuroanatomy of primate offspring: studies in rhesus macaque and common marmoset

    Get PDF
    RATIONALE: Exposure of the immature mammalian brain to stress factors, including stress levels of glucocorticoids, either prenatally or postnatally, is regarded as a major regulatory factor in short- and long-term brain function and, in human, as a major aetiological factor in neuropsychiatric disorders. Experimental human studies are not feasible and animal studies are required to demonstrate causality and elucidate mechanisms. A number of studies have been conducted and reviewed in rodents but there are relatively few studies in primates. OBJECTIVES: Here we present an overview of our published studies and some original data on the effects of: (1) prenatal stress on hypothalamic-pituitary-adrenal (HPA) re/activity and hippocampus neuroanatomy in juvenile-adolescent rhesus macaques; (2) prenatal dexamethasone (DEX) on HPA activity, behaviour and prefrontal cortex neuroanatomy in infant-adolescent common marmosets; (3) postnatal daily parental separation stress on HPA re/activity, behaviour, sleep and hippocampus and prefrontal cortex neuroanatomy in infant-adolescent common marmoset. RESULTS: Prenatal stress increased basal cortisol levels and reduced neurogenesis in macaque. Prenatal DEX was without effect on HPA activity and reduced social play and skilled motor behaviour in marmoset. Postnatal social stress increased basal cortisol levels, reduced social play, increased awakening and reduced hippocampal glucocorticoid and mineralocorticoid receptor expression in marmoset. CONCLUSIONS: Perinatal stress-related environmental events exert short- and long-term effects on HPA function, behaviour and brain status in rhesus macaque and common marmoset. The mechanisms mediating the enduring effects remain to be elucidated, with candidates including increased basal HPA function and epigenetic programming
    corecore