23 research outputs found

    Data descriptor: a global multiproxy database for temperature reconstructions of the Common Era

    Get PDF
    Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python. (TABLE) Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013'). This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product. This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike

    Tropical forcing of Circumpolar Deep Water Inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica

    Get PDF
    Outlet glaciers draining the Antarctic ice sheet into the Amundsen Sea Embayment (ASE) have accelerated in recent decades, most likely as a result of increased melting of their ice-shelf termini by warm Circumpolar Deep Water (CDW). An ocean model forced with climate reanalysis data shows that, beginning in the early 1990s, an increase in westerly wind stress near the continental shelf edge drove an increase in CDWinflow onto the shelf. The change in local wind stress occurred predominantly in fall and early winter, associated with anomalous high sea-level pressure (SLP) to the north of the ASE and an increase in sea surface temperature (SST) in the central tropical Pacific. The SLP change is associated with geopotential height anomalies in the middle and upper troposphere, characteristic of a stationary Rossby wave response to tropical SST forcing, rather than with changes in the zonally symmetric circulation. Tropical Pacific warming similar to that of the 1990s occurred in the 1940s, and thus is a candidate for initiating the current period of ASE glacier retreat

    Holocene climate variability

    No full text
    Although the dramatic climate disruptions of the last glacial period have received considerable attention, relatively little has been directed toward climate variability in the Holocene (11,500 cal yr B.P. to the present). Examination of 50 globally distributed paleoclimate records reveals as many as six periods of significant rapid climate change during the time periods 9000–8000, 6000–5000, 4200–3800, 3500–2500, 1200–1000, and 600–150 cal yr B.P. Most of the climate change events in these globally distributed records are characterized by polar cooling, tropical aridity, and major atmospheric circulation changes, although in the most recent interval (600–150 cal yr B.P.), polar cooling was accompanied by increased moisture in some parts of the tropics. Several intervals coincide with major disruptions of civilization, illustrating the human significance of Holocene climate variability
    corecore