14 research outputs found

    Cationic Liposomes as Vectors for Nucleic Acid and Hydrophobic Drug Therapeutics

    No full text
    Cationic liposomes (CLs) are effective carriers of a variety of therapeutics. Their applications as vectors of nucleic acids (NAs), from long DNA and mRNA to short interfering RNA (siRNA), have been pursued for decades to realize the promise of gene therapy, with approvals of the siRNA therapeutic patisiran and two mRNA vaccines against COVID-19 as recent milestones. The long-term goal of developing optimized CL-based NA carriers for a broad range of medical applications requires a comprehensive understanding of the structure of these vectors and their interactions with cell membranes and components that lead to the release and activity of the NAs within the cell. Structure鈥揳ctivity relationships of lipids for CL-based NA and drug delivery must take into account that these lipids act not individually but as components of an assembly of many molecules. This review summarizes our current understanding of how the choice of the constituting lipids governs the structure of their CL鈥揘A self-assemblies, which constitute distinct liquid crystalline phases, and the relation of these structures to their efficacy for delivery. In addition, we review progress toward CL鈥揘A nanoparticles for targeted NA delivery in vivo and close with an outlook on CL-based carriers of hydrophobic drugs, which may eventually lead to combination therapies with NAs and drugs for cancer and other diseases

    Monoliths of Semiconducting Block Copolymers by Magnetic Alignment

    No full text
    Achieving highly ordered and aligned assemblies of organic semiconductors is a persistent challenge for improving the performance of organic electronics. This is an acute problem in macromolecular systems where slow kinetics and long-range disorder prevail, thus making the fabrication of high-performance large-area semiconducting polymer films a nontrivial venture. Here, we demonstrate that the anisotropic nature of semiconducting chromophores can be effectively leveraged to yield hierarchically ordered materials that can be readily macroscopically aligned. An n-type mesogen was synthesized based on a perylene diimide (PDI) rigid core coupled to an imidazole headgroup <i>via</i> an alkyl spacer. Supramolecular assembly between the imidazole and acrylic acid units on a poly(styrene-<i>b</i>-acrylic acid) block copolymer yielded self-assembled hexagonally ordered polystyrene cylinders within a smectic A mesophase of the PDI mesogen and poly(acrylic acid). We show that magnetic fields can be used to control the alignment of the PDI species and the block copolymer superstructure concurrently in a facile manner during cooling from a high-temperature disordered state. The resulting materials are monoliths, with a single well-defined orientation of the semiconducting chromophore and block copolymer microdomains throughout the sample. This synergistic introduction of both functional properties and the means of controlling alignment by supramolecular attachment of mesogenic species to polymer backbones offer new possibilities for the modular design of functional nanostructured materials

    Assembly of Building Blocks by Double-End-Anchored Polymers in the Dilute Regime Mediated by Hydrophobic Interactions at Controlled Distances

    No full text
    Hierarchical assembly of building blocks via competing, orthogonal interactions is a hallmark of many of nature's composite materials that do not require highly specific ligand-receptor interactions. To mimic this assembly mechanism requires the development of building blocks capable of tunable interactions. In the present work, we explored the interplay between repulsive (steric and electrostatic) and attractive hydrophobic forces. The designed building blocks allow hydrophobic forces to effectively act at controlled, large distances, to create and tune the assembly of membrane-based building blocks under dilute conditions, and to affect their interactions with cellular membranes via physical cross-bridges. Specifically, we employed double-end-anchored poly(ethylene glycol)s (DEA-PEGs)-hydrophilic PEG tethers with hydrophobic tails on both ends. Using differential-interference-contrast optical microscopy, synchrotron small-angle X-ray scattering (SAXS), and cryogenic electron microscopy, we investigated the ability of DEA-PEGs to mediate assembly in the dilute regime on multiple length scales and on practical time scales. The PEG length, anchor hydrophobicity, and molar fraction of DEA-PEG molecules within a membrane strongly affect the assembly properties. Additional tuning of the intermembrane interactions can be achieved by adding repulsive interactions via PEG-lipids (steric) or cationic lipids to the DEA-PEG-mediated attractions. While the optical and electron microscopy imaging methods provided qualitative evidence of the ability of DEA-PEGs to assemble liposomes, the SAXS measurements and quantitative line-shape analysis in dilute preparations demonstrated that the ensemble average of loosely organized liposomal assemblies maintains DEA-PEG concentration-dependent tethering on defined nanometer length scales. For cationic liposome-DNA nanoparticles (CL-DNA NPs), aggregation induced by DEA-PEGs decreased internalization of NPs by cells, but tuning the DEA-PEG-induced attractions by adding repulsive steric interactions via PEG-lipids limited aggregation and increased NP uptake. Furthermore, confocal microscopy imaging together with colocalization studies with Rab11 and LysoTracker as markers of intracellular pathways showed that modifying CL-DNA NPs with DEA-PEGs alters their interactions with the plasma and endosomal membranes
    corecore