12,375 research outputs found
Localized Support for Injection Point Election in Hybrid Networks
Ad-hoc networks, a promising trend in wireless technology, fail to work
properly in a global setting. In most cases, self-organization and cost-free
local communication cannot compensate the need for being connected, gathering
urgent information just-in-time. Equipping mobile devices additionally with GSM
or UMTS adapters in order to communicate with arbitrary remote devices or even
a fixed network infrastructure provides an opportunity. Devices that operate as
intermediate nodes between the ad-hoc network and a reliable backbone network
are potential injection points. They allow disseminating received information
within the local neighborhood. The effectiveness of different devices to serve
as injection point differs substantially. For practical reasons the
determination of injection points should be done locally, within the ad-hoc
network partitions. We analyze different localized algorithms using at most
2-hop neighboring information. Results show that devices selected this way
spread information more efficiently through the ad-hoc network. Our results can
also be applied in order to support the election process for clusterheads in
the field of clustering mechanisms.Comment: The Sixth International Conference on Networking (ICN 2007
Small Worlds: Strong Clustering in Wireless Networks
Small-worlds represent efficient communication networks that obey two
distinguishing characteristics: a high clustering coefficient together with a
small characteristic path length. This paper focuses on an interesting paradox,
that removing links in a network can increase the overall clustering
coefficient. Reckful Roaming, as introduced in this paper, is a 2-localized
algorithm that takes advantage of this paradox in order to selectively remove
superfluous links, this way optimizing the clustering coefficient while still
retaining a sufficiently small characteristic path length.Comment: To appear in: 1st International Workshop on Localized Algorithms and
Protocols for Wireless Sensor Networks (LOCALGOS 2007), 2007, IEEE Compuster
Society Pres
The evolution of planetary nebulae. VIII. True expansion rates and visibility times
The visibility time of planetary nebulae (PNe) in stellar systems is an
essential quantity for estimating the size of a PN population in the context of
general population studies. For instance, it enters directly into the PN death
rate determination. The basic ingredient for determining visibility times is
the typical nebular expansion velocity, as a suited average over all PN sizes
of a PN population within a certain volume or stellar system. The true
expansion speed of the outer nebular edge of a PN is, however, not accessible
by spectroscopy -- a difficulty that we surmount by radiation-hydrodynamics
modelling. We find a mean true expansion velocity of 42 km/s, i.e. nearly twice
as high as the commonly adopted value to date. Accordingly, the time for a PN
to expand to a radius of, say 0.9 pc, is only 21000 +/- 5000 years. This
visibility time of a PN holds for all central star masses since a nebula does
not become extinct as the central star fades. There is, however, a dependence
on metallicity in the sense that the visibility time becomes shorter for lower
nebular metal content. With the higher expansion rate of PNe derived here we
determined their local death-rate density as (1.4 +/- 0.5) x E-12 PN pc^{-3}
yr^{-1}, using the local PN density advocated by Frew (2008).Comment: 20 pages, 10 Figures; accepted for publication in Astronomy &
Astrophysics / Note added in proo
Multimedia Content Distribution in Hybrid Wireless Networks using Weighted Clustering
Fixed infrastructured networks naturally support centralized approaches for
group management and information provisioning. Contrary to infrastructured
networks, in multi-hop ad-hoc networks each node acts as a router as well as
sender and receiver. Some applications, however, requires hierarchical
arrangements that-for practical reasons-has to be done locally and
self-organized. An additional challenge is to deal with mobility that causes
permanent network partitioning and re-organizations. Technically, these
problems can be tackled by providing additional uplinks to a backbone network,
which can be used to access resources in the Internet as well as to inter-link
multiple ad-hoc network partitions, creating a hybrid wireless network. In this
paper, we present a prototypically implemented hybrid wireless network system
optimized for multimedia content distribution. To efficiently manage the ad-hoc
communicating devices a weighted clustering algorithm is introduced. The
proposed localized algorithm deals with mobility, but does not require
geographical information or distances.Comment: 2nd ACM Workshop on Wireless Multimedia Networking and Performance
Modeling 2006 (ISBN 1-59593-485
The evolution of planetary nebulae VII. Modelling planetary nebulae of distant stellar systems
By means of hydrodynamical models we do the first investigations of how the
properties of planetary nebulae are affected by their metal content and what
can be learned from spatially unresolved spectrograms of planetary nebulae in
distant stellar systems. We computed a new series of 1D radiation-hydrodynamics
planetary nebulae model sequences with central stars of 0.595 M_sun surrounded
by initial envelope structures that differ only by their metal content. At
selected phases along the evolutionary path, the hydrodynamic terms were
switched off, allowing the models to relax for fixed radial structure and
radiation field into their equilibrium state with respect to energy and
ionisation. The analyses of the line spectra emitted from both the dynamical
and static models enabled us to systematically study the influence of
hydrodynamics as a function of metallicity and evolution. We also recomputed
selected sequences already used in previous publications, but now with
different metal abundances. These sequences were used to study the expansion
properties of planetary nebulae close to the bright cut-off of the planetary
nebula luminosity function. Our simulations show that the metal content
strongly influences the expansion of planetary nebulae: the lower the metal
content, the weaker the pressure of the stellar wind bubble, but the faster the
expansion of the outer shell because of the higher electron temperature. This
is in variance with the predictions of the interacting-stellar-winds model (or
its variants) according to which only the central-star wind is thought to be
responsible for driving the expansion of a planetary nebula. Metal-poor objects
around slowly evolving central stars become very dilute and are prone to depart
from thermal equilibrium because then adiabatic expansion contributes to gas
cooling. ...abridged abstract.Comment: 35 pages, 43 figures, accepted for publication by A&
Thermodynamics of polymer adsorption to a flexible membrane
We analyze the structural behavior of a single polymer chain grafted to an
attractive, flexible surface. Our model is composed of a coarse-grained
bead-and-spring polymer and a tethered membrane. By means of extensive parallel
tempering Monte Carlo simulations it is shown that the system exhibits a rich
phase behavior ranging from highly ordered, compact to extended random coil
structures and from desorbed to completely adsorbed or even partially embedded
conformations. These findings are summarized in a pseudophase diagram
indicating the predominant class of conformations as a function of the external
parameters temperature and polymer-membrane interaction strength. By comparison
with adsorption to a stiff membrane surface it is shown that the flexibility of
the membrane gives rise to qualitatively new behavior such as stretching of
adsorbed conformations
- …