6,394 research outputs found

    Jet-cloud interations and the brightening of the narrow line region in Seyfert galaxies

    Get PDF
    We study the kinematical and brightness evolution of emission line clouds in the narrow line region (NLR) of Seyfert galaxies during the passage of a jet. We derive a critical density above which a cloud remains radiative after compression by the jet cocoon. The critical density depends mainly on the cocoon pressure. Super-critical clouds increase in emission line brightness, while sub-critical clouds generally are highly overheated reducing their luminosity below that of the inter-cloud medium. Due to the pressure stratification in the bow-shock of the jet, a cylindrical structure of nested shells develops around the jet. The most compact and brightest compressed clouds surround the cloud-free channel of the radio jet. To support our analytical model we present a numerical simulation of a supersonic jet propagating into a clumpy NLR. The position-velocity diagram of the simulated H_alpha emission shows total line widths of the order of 500 km/s with large-scale variations in the radial velocities of the clouds due to the stratified pressure in the bow-shock region of the jet. Most of the luminosity is concentrated in a few dense clouds surrounding the jet. These morphological and kinematic signatures are all found in the well observed NLR of NGC1068 and other Seyfert galaxies.Comment: 11 pages, 3 figures, accepted for publication in The Astrophysical Journal Letter

    Primordial nucleosynthesis as a probe of fundamental physics parameters

    Full text link
    We analyze the effect of variation of fundamental couplings and mass scales on primordial nucleosynthesis in a systematic way. The first step establishes the response of primordial element abundances to the variation of a large number of nuclear physics parameters, including nuclear binding energies. We find a strong influence of the n-p mass difference (for the 4He abundance), of the nucleon mass (for deuterium) and of A=3,4,7 binding energies (for 3He, 6Li and 7Li). A second step relates the nuclear parameters to the parameters of the Standard Model of particle physics. The deuterium, and, above all, 7Li abundances depend strongly on the average light quark mass hat{m} \equiv (m_u+m_d)/2. We calculate the behaviour of abundances when variations of fundamental parameters obey relations arising from grand unification. We also discuss the possibility of a substantial shift in the lithium abundance while the deuterium and 4He abundances are only weakly affected.Comment: v2: 34 pages, 2 figures, typo in last GUT scenario corrected, added discussion and graph of nonlinear behaviour in GUT scenarios, added short section discussing binding of dineutron and 8Be, refs added, conclusions unaltered. Accepted for publication, Phys. Rev.

    Submillimeter-wave emission of three Galactic red novae: cool molecular outflows produced by stellar mergers

    Full text link
    Red novae are optical transients erupting at luminosities typically higher than those of classical novae. Their outbursts are believed to be caused by stellar mergers. We present millimeter/submillimeter-wave observations with ALMA and SMA of the three best known Galactic red novae, V4332 Sgr, V1309 Sco, and V838 Mon. The observations were taken 22, 8, and 14 yr after their respective eruptions and reveal the presence of molecular gas at excitation temperatures of 35-200 K. The gas displays molecular emission in rotational transitions with very broad lines (full width \sim400 km\s). We found emission of CO, SiO, SO, SO2_2 (in all three red novae), H2_2S (covered only in V838 Mon) and AlO (present in V4332 Sgr and V1309 Sco). No anomalies were found in the isotopic composition of the molecular material and the chemical (molecular) compositions of the three red novae appear similar to those of oxygen-rich envelopes of classical evolved stars (RSGs, AGBs, post-AGBs). The minimum masses of the molecular material that most likely was dispersed in the red-nova eruptions are 0.1, 0.01, and 104^{-4} M_{\odot} for V838 Mon, V4332 Sgr, and V1309 Sco, respectively. The molecular outflows in V4332 Sgr and V1309 Sco are spatially resolved and appear bipolar. The kinematic distances to V1309 Sco and V4332 Sgr are 2.1 and 4.2 kpc, respectively. The kinetic energy stored in the ejecta of the two older red-nova remnants of V838 Mon and V4332 Sgr is of order 104610^{46} erg, similar to values found for some post-AGB (pre-PN) objects whose bipolar ejecta were also formed in a short-duration eruption. Our observations strengthen the link between these post-AGB objects and red novae and support the hypothesis that some of the post-AGB objects were formed in a common-envelope ejection event or its most catastrophic outcome, a merger.Comment: 19 pages, 13 figures, accepted to A&

    Stability of Localized Wave Fronts in Bistable Systems

    Get PDF
    Localized wave fronts are a fundamental feature of biological systems from cell biology to ecology. Here, we study a broad class of bistable models subject to self-activation, degradation, and spatially inhomogeneous activating agents. We determine the conditions under which wave-front localization is possible and analyze the stability thereof with respect to extrinsic perturbations and internal noise. It is found that stability is enhanced upon regulating a positional signal and, surprisingly, also for a low degree of binding cooperativity. We further show a contrasting impact of self-activation to the stability of these two sources of destabilization. DOI: 10.1103/PhysRevLett.110.03810

    The three-dimensional structure of the Eta Carinae Homunculus

    Get PDF
    We investigate, using the modeling code SHAPE, the three-dimensional structure of the bipolar Homunculus nebula surrounding Eta Carinae, as mapped by new ESO VLT/X-Shooter observations of the H2 λ=2.12125\lambda=2.12125 micron emission line. Our results reveal for the first time important deviations from the axisymmetric bipolar morphology: 1) circumpolar trenches in each lobe positioned point-symmetrically from the center and 2) off-planar protrusions in the equatorial region from each lobe at longitudinal (~55 degrees) and latitudinal (10-20 degrees) distances from the projected apastron direction of the binary orbit. The angular distance between the protrusions (~110 degrees) is similar to the angular extent of each polar trench (~130 degrees) and nearly equal to the opening angle of the wind-wind collision cavity (~110 degrees). As in previous studies, we confirm a hole near the centre of each polar lobe and no detectable near-IR H2 emission from the thin optical skirt seen prominently in visible imagery. We conclude that the interaction between the outflows and/or radiation from the central binary stars and their orientation in space has had, and possibly still has, a strong influence on the Homunculus. This implies that prevailing theoretical models of the Homunculus are incomplete as most assume a single star origin that produces an axisymmetric nebula. We discuss how the newly found features might be related to the Homunculus ejection, the central binary and the interacting stellar winds. We also include a 3D printable version of our Homunculus model.Comment: 14 pages, 7 color figures, 1 interactive 3D figure (Figure 5, requires Adobe Reader), published in MNRAS. A 3D printable version of our Homunculus model can be downloaded from http://svs.gsfc.nasa.gov/vis/a010000/a011500/a011568/Eta_Car_Homunuculus_3D_model.zip or from the 'Supporting Information' link in the electronic version of the MNRAS articl

    The Changing AGN Population

    Full text link
    We investigate how the fraction of broad-line sources in the AGN population changes with X-ray luminosity and redshift. We first construct the rest-frame hard-energy (2-8 keV) X-ray luminosity function (HXLF) at z=0.1-1 using Chandra Lockman Hole-Northwest wide-area data, Chandra Deep Field-North 2 Ms data, other Chandra deep field data, and the ASCA Large Sky Survey data. We find that broad-line AGNs dominate above 3e43 ergs/s and have a mean luminosity of 1.3e44 ergs/s. Type II AGNs can only become an important component of the X-ray population at Seyfert-like X-ray luminosities. We then construct z=0.1-0.5 and z=0.5-1 HXLFs and compare them with both the local HXLF measured from HEAO-1 A2 survey data and the z=1.5-3 HXLF measured from soft-energy (0.5-2 keV) Chandra and ROSAT data. We find that the number density of >1e44 ergs/s sources (quasars) steadily declines with decreasing redshift, while the number density of 1e43-1e44 ergs/s sources peaks at z=0.5-1. Strikingly, however, the number density of broad-line AGNs remains roughly constant with redshift while their average luminosities decline at the lower redshifts, showing another example of cosmic downsizing.Comment: Accepted by The Astrophysical Journal Letters, 5 page

    Stability Properties of Strongly Magnetized Spine Sheath Relativistic Jets

    Full text link
    The linearized relativistic magnetohydrodynamic (RMHD) equations describing a uniform axially magnetized cylindrical relativistic jet spine embedded in a uniform axially magnetized relativistically moving sheath are derived. The displacement current is retained in the equations so that effects associated with Alfven wave propagation near light speed can be studied. A dispersion relation for the normal modes is obtained. Analytical solutions for the normal modes in the low and high frequency limits are found and a general stability condition is determined. A trans-Alfvenic and even a super-Alfvenic relativistic jet spine can be stable to velocity shear driven Kelvin-Helmholtz modes. The resonance condition for maximum growth of the normal modes is obtained in the kinetically and magnetically dominated regimes. Numerical solution of the dispersion relation verifies the analytical solutions and is used to study the regime of high sound and Alfven speeds.Comment: 42 pages includes 7 figures, to appear in Ap

    Radio Frequency Models of Novae in eruption. I. The Free-Free Process in Bipolar Morphologies

    Get PDF
    Observations of novae at radio frequencies provide us with a measure of the total ejected mass, density profile and kinetic energy of a nova eruption. The radio emission is typically well characterized by the free-free emission process. Most models to date have assumed spherical symmetry for the eruption, although it has been known for as long as there have been radio observations of these systems, that spherical eruptions are to simplistic a geometry. In this paper, we build bipolar models of the nova eruption, assuming the free-free process, and show the effects of varying different parameters on the radio light curves. The parameters considered include the ratio of the minor- to major-axis, the inclination angle and shell thickness (further parameters are provided in the appendix). We also show the uncertainty introduced when fitting spherical model synthetic light curves to bipolar model synthetic light curves. We find that the optically thick phase rises with the same power law (Sνt2S_{\nu} \propto t^2) for both the spherical and bipolar models. In the bipolar case there is a "plateau" phase -- depending on the thickness of the shell as well as the ratio of the minor- to major-axis -- before the final decline, that follows the same power law (Sνt3S_{\nu} \propto t^{-3}) as in the spherical case. Finally, fitting spherical models to the bipolar model synthetic light curves requires, in the worst case scenario, doubling the ejected mass, more than halving the electron temperature and reducing the shell thickness by nearly a factor of 10. This implies that in some systems we have been over predicting the ejected masses and under predicting the electron temperature of the ejecta.Comment: 9 pages, 6 figures, accepted for publication in ApJ, accompanying movie to figure 3 available at http://www.ast.uct.ac.za/~valerio/papers/radioI
    corecore