16 research outputs found

    Past changes in riverine input in the Gulf of Guinea - linked to the migration of the ITCZ

    No full text
    Large river systems draining the West African Monsoon area deliver sediments and dissolved trace elements into the Gulf of Guinea (GoG) in the easternmost equatorial Atlantic. The different catchment areas of these river systems are characterized by different geological ages and rock types releasing distinct radiogenic neodymium isotope compositions during weathering which are supplied to the GoG. The main rivers discharging into the GoG are the Niger, the Sanaga, the Nyong and the Ntem with present day εNd signatures of -10.5 [1], -12.3, -12.5 and -28.1 [2], respectively. These riverine inputs mix with the tropical Atlantic surface waters. At intermediate water depths Antarctic Intermediate Water (AAIW) prevails whereas the deep basin at this location is mainly filled with NADW. We focus on a marine sediment core that was recovered off the Sanaga and Ntem Rivers and we reconstruct changes in riverine inputs and in mixing of surface and deep water masses over the past 140,000 years. Changes in riverine inputs most likely reflecting latitudinal shifts of the rainfall zones across the different catchment areas were obtained from the Nd isotope signatures of the residual detrital fraction of the sediment. Sediment leachates of several GoG core top samples reflect the riverine input from nearby rivers indicating transport of particles coated in the rivers. Both the sediment leachates and the residual detrital fraction show similar patterns, with shifts towards radiogenic values during the interglacials and least radiogenic values during glacial periods. This shift in εNd values may be attributed to the migration of the rainfall zones towards the north during interglacial times and thus implies the increased influence of the northern rivers, the Sanaga and Nyong. The oxidatively-reductively cleaned planktonic foraminiferal calcite of the core top samples in the GoG reflects surface seawater signatures. Non-reductively cleaned planktonic foraminiferal tests and cleaned shallow endo-benthic and epi-benthic foraminiferal tests were used to acquire information about past bottom waters. Difficulties in cleaning down core foraminiferal samples were experienced and these samples appear to be contaminated by secondary manganese and iron bearing phases, even after cleaning. Those phases may have overprinted the original surface water Nd isotope composition in the planktonic foraminiferal tests. As the planktonic and benthic foraminiferal values are overall similar to the sediment leachates, the foraminiferal isotope signatures are most likely overprinted by isotopic signals originating from the rivers due to remobilization processes in the sediments and formation of secondary phases such as Mn-carbonates, which are attached to the foraminiferal calcites. References: [1] Goldstein et al. (1984) Earth and Planetary Science Letter 70, 221-236. [2] Weldeab et al. (2011) Geophysical Research Letter 38, pp. 5

    Persistently strong Indonesian Throughflow during marine isotope stage 3: evidence from radiogenic isotopes

    No full text
    Highlights: • First ITF reconstruction combining detrital and authigenic isotope signatures. • At the core site signatures of surface water cannot be separated from bottom water. • Intermediate to deep waters remain unchanged in western Timor Sea during MIS3. • Clay-size fraction of the sediment indicates a persistently strong ITF during MIS3. Abstract: The Indonesian Throughflow (ITF) connects the western Pacific Ocean with the eastern Indian Ocean, thus forming one of the major near surface current systems of the global thermohaline circulation. The intensity of the ITF has been found to be sensitive to changes in global ocean circulation, fluctuations in sea level, as well as to the prevailing monsoonal conditions of the Indonesian Archipelago and NW Australia. This study presents the first reconstruction of ITF dynamics combining radiogenic isotope compositions of neodymium (Nd), strontium (Sr), and lead (Pb) of the clay-size detrital fraction to investigate changes in sediment provenance, and paleo seawater Nd signatures extracted from the planktonic foraminifera and authigenic Fe–Mn oxyhydroxide coatings of the marine sediments focussing on marine isotope stage 3 (MIS3). Sediment core MD01-2378 was recovered within the framework of the International Marine Global Change Study (IMAGES) and is located in the area of the ITF outflow in the western Timor Sea (Scott Plateau, 13° 04.95′ S and 121° 47.27′ E, 1783 m water depth). In order to produce reliable seawater signatures, several extraction methods were tested against each other. The results of the study show that at this core location the extraction of surface water Nd isotope compositions from planktonic foraminifera is complicated by incomplete removal of contributions from Fe–Mn oxyhydroxides carrying ambient bottom water signatures. The bottom water Nd isotope signatures reliably obtained from the sediment coatings (average εNd = −5.0) document an essentially invariable water mass composition similar to today throughout the entire MIS3. The radiogenic Nd, Sr, and Pb isotope records of the clay-sized detrital fraction suggest that the Indonesian Archipelago rather than NW Australia was the main particle source at the location of core MD01-2378, and thus indicating a persistently strong ITF during MIS3. Furthermore, the variations of the detrital radiogenic isotopes are shown to be more sensitive to changes in circulation and document a somewhat enhanced ITF intensity during the early part of MIS3 until 47.4 ka compared with the remaining MIS3

    Biochemical and Structural Insights into Bacterial Organelle Form and Biogenesis

    Get PDF
    Many heterotrophic bacteria have the ability to make polyhedral structures containing metabolic enzymes that are bounded by a unilamellar protein shell (metabolosomes or enterosomes). These bacterial organelles contain enzymes associated with a specific metabolic process (e.g. 1,2-propanediol or ethanolamine utilization). We show that the 21 gene regulon specifying the pdu organelle and propanediol utilization enzymes from Citrobacter freundii is fully functional when cloned in Escherichia coli, both producing metabolosomes and allowing propanediol utilization. Genetic manipulation of the level of specific shell proteins resulted in the formation of aberrantly shaped metabolosomes, providing evidence for their involvement as delimiting entities in the organelle. This is the first demonstration of complete recombinant metabolosome activity transferred in a single step and supports phylogenetic evidence that the pdu genes are readily horizontally transmissible. One of the predicted shell proteins (PduT) was found to have a novel Fe-S center formed between four protein subunits. The recombinant model will facilitate future experiments establishing the structure and assembly of these multiprotein assemblages and their fate when the specific metabolic function is no longer required
    corecore