47 research outputs found

    De-risk South East Asia

    Get PDF
    The project aims to develop climate risk management systems in key SE Asia countries which include insurance products that help shield smallholder farmers and businesses in coffee, sugar, rice, cassava, rubber, dairy, and grazing, across the agricultural value chain. These products could protect smallholders from physical and financial disaster associated with climate change. For the development of insurance products, one of the challenges is to increase the level of awareness among farmers and policymakers about the potential role of insurance in risks transfer, including raising the awareness of insurance policy creators.International Climate Initiative (IKI) of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU

    Introduction to COFFE: The Next-Generation HPCMP CREATE-AV CFD Solver

    Get PDF
    HPCMP CREATE-AV Conservative Field Finite Element (COFFE) is a modular, extensible, robust numerical solver for the Navier-Stokes equations that invokes modularity and extensibility from its first principles. COFFE implores a flexible, class-based hierarchy that provides a modular approach consisting of discretization, physics, parallelization, and linear algebra components. These components are developed with modern software engineering principles to ensure ease of uptake from a user's or developer's perspective. The Streamwise Upwind/Petrov-Galerkin (SU/PG) method is utilized to discretize the compressible Reynolds-Averaged Navier-Stokes (RANS) equations tightly coupled with a variety of turbulence models. The mathematics and the philosophy of the methodology that makes up COFFE are presented

    Technical Report Series on Global Modeling and Data Assimilation, Volume 41 : GDIS Workshop Report

    Get PDF
    The workshop "An International Global Drought Information System Workshop: Next Steps" was held on 10-13 December 2014 in Pasadena, California. The more than 60 participants from 15 countries spanned the drought research community and included select representatives from applications communities as well as providers of regional and global drought information products. The workshop was sponsored and supported by the US National Integrated Drought Information System (NIDIS) program, the World Climate Research Program (WCRP: GEWEX, CLIVAR), the World Meteorological Organization (WMO), the Group on Earth Observations (GEO), the European Commission Joint Research Centre (JRC), the US Climate Variability and Predictability (CLIVAR) program, and the US National Oceanic and Atmospheric Administration (NOAA) programs on Modeling, Analysis, Predictions and Projections (MAPP) and Climate Variability & Predictability (CVP). NASA/JPL hosted the workshop with logistical support provided by the GEWEX program office. The goal of the workshop was to build on past Global Drought Information System (GDIS) progress toward developing an experimental global drought information system. Specific goals were threefold: (i) to review recent research results focused on understanding drought mechanisms and their predictability on a wide range of time scales and to identify gaps in understanding that could be addressed by coordinated research; (ii) to help ensure that WRCP research priorities mesh with efforts to build capacity to address drought at the regional level; and (iii) to produce an implementation plan for a short duration pilot project to demonstrate current GDIS capabilities. See http://www.wcrp-climate.org/gdis-wkshp-2014-objectives for more information

    Climate Risk and Early Warning Systems (CREWS) for Papua New Guinea

    Get PDF
    Developing and least developed countries are particularly vulnerable to the impact of climate change and climate extremes, including drought. In Papua New Guinea (PNG), severe drought caused by the strong El Niño in 2015–2016 affected about 40% of the population, with almost half a million people impacted by food shortages. Recognizing the urgency of enhancing early warning systems to assist vulnerable countries with climate change adaptation, the Climate Risk and Early Warning Systems (CREWS) international initiative has been established. In this chapter, the CREWS-PNG project is described. The CREWS-PNG project aims to develop an improved drought monitoring and early warning system, running operationally through a collaboration between PNG National Weather Services (NWS), the Australian Bureau of Meteorology and the World Meteorological Organization that will enable better strategic decision-making for agriculture, water management, health and other climate-sensitive sectors. It is shown that current dynamical climate models can provide skillful predictions of regional rainfall at least 3 months in advance. Dynamical climate model-based forecast products are disseminated through a range of Web-based information tools. It is demonstrated that seasonal climate prediction is an effective solution to assist governments and local communities with informed decision-making in adaptation to climate variability and change

    Status of Muon Collider Research and Development and Future Plans

    Get PDF
    The status of the research on muon colliders is discussed and plans are outlined for future theoretical and experimental studies. Besides continued work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy collider, many studies are now concentrating on a machine near 0.1 TeV (CoM) that could be a factory for the s-channel production of Higgs particles. We discuss the research on the various components in such muon colliders, starting from the proton accelerator needed to generate pions from a heavy-Z target and proceeding through the phase rotation and decay (πμνμ\pi \to \mu \nu_{\mu}) channel, muon cooling, acceleration, storage in a collider ring and the collider detector. We also present theoretical and experimental R & D plans for the next several years that should lead to a better understanding of the design and feasibility issues for all of the components. This report is an update of the progress on the R & D since the Feasibility Study of Muon Colliders presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A. Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics (Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics, Accelerators and Beam

    TOWARD GLOBAL DROUGHT EARLY WARNING CAPABILITY: Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting

    Get PDF
    The need for a global drought early warning framework. Drought has had a significant impact on civilization throughout history in terms of reductions in agricultural productivity, potable water supply, and economic activity, and in extreme cases this has led to famine. Every continent has semiarid areas, which are especially vulnerable to drought. The Intergovernmental Panel on Climate Change has noted that average annual river runoff and water availability are projected to decrease by 10%–13% over some dry and semiarid regions in mid and low latitudes, increasing the frequency, intensity, and duration of drought, along with its associated impacts. The sheer magnitude of the problem demands efforts to reduce vulnerability to drought by moving away from the reactive, crisis management approach of the past toward a more proactive, risk management approach that is centered on reducing vulnerability to drought as much as possible while providing early warning of evolving drought conditions and possible impacts. Many countries, unfortunately, do not have adequate resources to provide early warning, but require outside support to provide the necessary early warning information for risk management. Furthermore, in an interconnected world, the need for information on a global scale is crucial for understanding the prospect of declines in agricultural productivity and associated impacts on food prices, food security, and potential for civil conflict

    Toward Global Drought Early Warning Capability - Expanding International Cooperation for the Development of a Framework for Monitoring and Forecasting

    Get PDF
    Drought has had a significant impact on civilization throughout history in terms of reductions in agricultural productivity, potable water supply, and economic activity, and in extreme cases this has led to famine. Every continent has semiarid areas, which are especially vulnerable to drought. The Intergovernmental Panel on Climate Change has noted that average annual river runoff and water availability are projected to decrease by 10 percent-13 percent over some dry and semiarid regions in mid and low latitudes, increasing the frequency, intensity, and duration of drought, along with its associated impacts. The sheer magnitude of the problem demands efforts to reduce vulnerability to drought by moving away from the reactive, crisis management approach of the past toward a more proactive, risk management approach that is centered on reducing vulnerability to drought as much as possible while providing early warning of evolving drought conditions and possible impacts. Many countries, unfortunately, do not have adequate resources to provide early warning, but require outside support to provide the necessary early warning information for risk management. Furthermore, in an interconnected world, the need for information on a global scale is crucial for understanding the prospect of declines in agricultural productivity and associated impacts on food prices, food security, and potential for civil conflict. This paper highlights the recent progress made toward a Global Drought Early Warning Monitoring Framework (GDEWF), an underlying partnership and framework, along with its Global Drought Early Warning System (GDEWS), which is its interoperable information system, and the organizations that have begun working together to make it a reality. The GDEWF aims to improve existing regional and national drought monitoring and forecasting capabilities by adding a global component, facilitating continental monitoring and forecasting (where lacking), and improving these tools at various scales, thereby increasing the capacity of national and regional institutions that lack drought early warning systems or complementing existing ones. A further goal is to improve coordination of information delivery for drought-related activities and relief efforts across the world. This is especially relevant for regions and nations with low capacity for drought early warning. To do this requires a global partnership that leverages the resources necessary and develops capabilities at the global level, such as global drought forecasting combined with early warning tools, global real-time monitoring, and harmonized methods to identify critical areas vulnerable to drought. Although the path to a fully functional GDEWS is challenging, multiple partners and organizations within the drought, forecasting, agricultural, and water-cycle communities are committed to working toward its success

    THE HIGH-LEVEL MEETING ON NATIONAL DROUGHT POLICY

    Get PDF
    D rought is widely recognized as a slow creeping natural hazard that occurs as a consequence of the natural climatic variability. In recent years, concern has grown worldwide that droughts may be increasing in frequency and severity given the changing climatic conditions. Responses to droughts in most parts of the world are generally reactive (i.e., crisis management) and are known to be untimely, poorly coordinated, and disintegrated. Consequently, the economic, social, and environmental impacts of droughts have increased significantly worldwide. Despite the repeated occurrences of droughts, no concerted efforts have ever been made to initiate a global dialogue on the formulation and adoption of national drought policies aimed at drought risk reduction

    High Level Meeting on National Drought Policy: Summary and Major Outcomes

    Get PDF
    Drought is widely recognized as a slow creeping natural hazard that occurs as a consequence of the natural climatic variability. In recent years, concern has grown world-wide that droughts may be increasing in frequency and severity given the changing climatic conditions. Responses to droughts in most parts of the world are generally reactive in terms of crisis management and are known to be untimely, poorly coordinated and disintegrated. Without a coordinated, national drought policy, nations will continue to respond to drought in a reactive, crisis management mode. In order to address the issue of national drought policy, the World Meteorological Organization (WMO), the Secretariat of the United Nations Convention to Combat Desertification (UNCCD) and the Food and Agriculture Organization of the United Nations (FAO), in collaboration with a number of partners, organized the High-level Meeting on National Drought Policy (HMNDP) in Geneva, Switzerland, from 11 to 15 March 2013. The goal of HMNDP was to provide practical insight into useful, science-based actions to address key drought issues and various strategies to cope with drought. During HMNDP, detailed discussions were held during a scientific segment over 3.5 days, leading to the adoption of a HMNDP Declaration in a High Level Segment, calling on all the governments around the world to develop and implement national drought policies. The major outcomes of the scientific and high level segments are presented
    corecore