686 research outputs found

    Combustion behaviour of some biodesulphurized coals assessed by TGA/DTA

    Get PDF
    Thermal analysis, i.e. TGA/DTA is used to study the changes in the combustion behaviour of microbially treated coals. In view of their high sulphur content and industrial significance three samples are under consideration, i.e. one lignite and two subbituminous from different region in Bulgaria. The differences in burning profiles can be related to structural changes resulted from biological treatments. The overall biological treatment generates these changes probably due to the oxidation process. Concerning organic sulphur biodesulphurization there is no change in any drastic mannerof the thermal characteristic parameters. In general, applied biotreatments provoke a complex influence on combustion coal behaviour. From one side a better ignition performance, a minor decrease in higher heating value and diminishing peak temperature of maximum weight loss rate for all biotreated samples are observed. From other side some decrease in the combustibility indicated by an increase in the combustion time and the end of combustion temperature are obvious. Also well determined decrease of self-heating temperature after biotreatments evolves high risk of spontaneous unmanageable coal combustion

    Variation in chlorophyll content per unit leaf area in spring wheat and implications for selection in segregating material

    Get PDF
    Reduced levels of leaf chlorophyll content per unit leaf area in crops may be of advantage in the search for higher yields. Possible reasons include better light distribution in the crop canopy and less photochemical damage to leaves absorbing more light energy than required for maximum photosynthesis. Reduced chlorophyll may also reduce the heat load at the top of canopy, reducing water requirements to cool leaves. Chloroplasts are nutrient rich and reducing their number may increase available nutrients for growth and development. To determine whether this hypothesis has any validity in spring wheat requires an understanding of genotypic differences in leaf chlorophyll content per unit area in diverse germplasm. This was measured with a SPAD 502 as SPAD units. The study was conducted in series of environments involving up to 28 genotypes, mainly spring wheat. In general, substantial and repeatable genotypic variation was observed. Consistent SPAD readings were recorded for different sampling positions on leaves, between different leaves on single plant, between different plants of the same genotype, and between different genotypes grown in the same or different environments. Plant nutrition affected SPAD units in nutrient poor environments. Wheat genotypes DBW 10 and Transfer were identified as having consistent and contrasting high and low average SPAD readings of 52 and 32 units, respectively, and a methodology to allow selection in segregating populations has been developed. © 2014 Hamblin et al

    Combustion behaviour of some biodesulphurized coals assessed by TGA/DTA

    Get PDF
    Thermal analysis, i.e. TGA/DTA is used to study the changes in the combustion behaviour of microbially treated coals. In view of their high sulphur content and industrial significance three samples are under consideration, i.e. one lignite and two subbituminous from different region in Bulgaria. The differences in burning profiles can be related to structural changes resulted from biological treatments. The overall biological treatment generates these changes probably due to the oxidation process. Concerning organic sulphur biodesulphurization there is no change in any drastic mannerof the thermal characteristic parameters. In general, applied biotreatments provoke a complex influence on combustion coal behaviour. From one side a better ignition performance, a minor decrease in higher heating value and diminishing peak temperature of maximum weight loss rate for all biotreated samples are observed. From other side some decrease in the combustibility indicated by an increase in the combustion time and the end of combustion temperature are obvious. Also well determined decrease of self-heating temperature after biotreatments evolves high risk of spontaneous unmanageable coal combustion

    Biodesulphurized subbituminous coal by different fungi and bacteria studied by reductive pyrolysis. Part 1: Initial coal

    Get PDF
    One of the perspective methods for clean solid fuels production is biodesulphurization. In order to increase the effect of this approach it is necessary to apply the advantages of more informative analytical techniques. Atmospheric pressure temperature programming reduction (AP-TPR) coupled with different detection systems gave us ground to attain more satisfactory explanation of the effects of biodesulphurization on the treated solid products. Subbituminous high sulphur coal from ‘‘Pirin” basin (Bulgaria) was selected as a high sulphur containing sample. Different types of microorganisms were chosen and maximal desulphurization of 26% was registered. Biodesulphurization treatments were performed with three types of fungi: ‘‘Trametes Versicolor” – ATCC No. 200801, ‘‘Phanerochaeta Chrysosporium” – ME446, Pleurotus Sajor-Caju and one Mixed Culture of bacteria – ATCC No. 39327. A high degree of inorganic sulphur removal (79%) with Mixed Culture of bacteria and consecutive reduction by 13% for organic sulphur (Sorg) decrease with ‘‘Phanerochaeta Chrysosporium” and ‘‘Trametes Versicolor” were achieved. To follow the Sorg changes a set of different detection systems i.e. AP-TPR coupled ‘‘on-line” with mass spectrometry (AP-TPR/MS), on-line with potentiometry (AP-TPR/pot) and by the ‘‘off-line” AP-TPR/GC/MS analysis was used. The need of applying different atmospheres in pyrolysis experiments was proved and their effects were discussed. In order to reach more precise total sulphur balance, oxygen bomb combustion followed by ion chromatography was used

    The discrimination of abrupt changes in speed and direction of visual motion

    Get PDF
    AbstractA random dot pattern that moved within an invisible aperture was used to present two motions contiguously in time. The motions differed slightly either in speed (Experiments 1 and 3) or in direction (Experiments 2 and 4) and the subject had to discriminate the sign of the change (e.g. increment or decrement). The same discrimination task was performed when the two motions were temporally separated by 1 s. In Experiments 1 and 2 discrimination thresholds were measured with motion durations of 0.125, 0.25, 0.5 and 1.0 s and mean speeds of 2, 4, 8, and 16°/s. In Experiments 3 and 4 thresholds were measured with aperture widths of 5 and 20 cm. The discrimination of contiguous motions progressively deteriorated with decreasing duration and mean speed of motion. For the lowest value of duration the Weber fraction for contiguous speeds was more than three times as the Weber fractions for separate speeds. For the same low value of duration the thresholds for discrimination of direction of contiguous motions were only about 50% higher than the thresholds for separate motions. The Weber fraction for contiguous speeds was ca. three times higher with the smaller aperture than with the larger one, provided the ratio ‘aperture width/mean speed’ (i.e. the lifetime of the moving dots) was less than 0.3 s. Aperture width did not affect the discrimination of direction of contiguous motions. The discrimination of contiguous motions is discussed together with the known data for detection of changes in speed and direction. It is suggested that both, detection of changes in speed and discrimination of the sign of speed changes, may be performed by a common visual mechanism

    Analytical pre-test support of boil-down test QUENCH-11

    Get PDF
    Analytische Unterstützung zur Vorbereitung des Ausdampf-Versuchs QUENCH-11 Im QUENCH-Vorhaben des Forschungszentrums Karlsruhe soll das Fluten eines teilweise zerstörten Kerns untersucht werden. Der zweite LACOMERA Versuch Q-L2 (QUENCH-11) beginnt mit einer Ausdampfphase des Bündels, bis der Wasserspiegel das untere Bündel¬ende erreicht hat. Ein derartiger Versuch wurde bislang noch nicht in der QUENCH-Anlage durchgeführt, so dass mit SCDAP/RELAP5 mod3.2.irs eine Machbarkeitsstudie erforderlich war. Die Ergebnisse zeigen, dass eine Zusatzheizung im unteren Plenum notwendig ist, um den Wasserstand und die Verdampfungsrate (Dampfmassenstrom in der Ausdampfphase) unabhängig von der angestrebten Maximaltemperatur im Bündel zu regeln. Für eine verläss¬liche Versuchsplanung sowie zur Erstellung der Energiebilanz muss die Zusatzheizung in¬nerhalb des unteren Plenums unterhalb der Wasseroberfläche installiert werden, damit die Heizleistung vollständig in das Wasser eingekoppelt wird. Um die Verdampfungsrate über längere Zeit aufrecht zu erhalten, muss zusätzlich Wasser in das untere Plenum eingespeist werden. Anhand dieser Rechnungen wird der Testablauf im Detail diskutiert. Eine entsprechende Studie zeigte die Durchführbarkeit eines solchen Ausdampftests und war die Grundlage für die oben erwähnten Änderungen in der Anlage und der Versuchs-Durchführung gegenüber früheren Tests. Eine Reihe von Vorversuche wurde durchgeführt, um die Brauchbarkeit der Änderungen an der Anlage und der geplanten Versuchsführung zu prüfen und um Daten für das thermohydraulische Verhalten der Anlage zu bekommen, an denen die Code-Modelle für die Voraus- und Nachrechnungen von QUENCH-11 getestet werden können. Im Anschluss an die Vorversuche wurden wie bei früheren QUENCH-Tests detaillierte Vorausrechnungen mit verschiedenen Codes zu Versuchsablauf und -steuerung durchgeführt. Drei Forschungs¬einrichtungen in der EU waren beteiligt. Die berechneten Ergebnisse reagieren empfindlich auf Änderungen der Versuchsparameter wie das anfängliche axiale Temperaturprofil und die eingespeiste elektrische Leistung, wie es auch für die untersuchten physikalischen Bedin¬gungen im Versuch erwartet werden kann

    Scale-Up Effect on Heat Transfer in a Fluidized Bed Near the Onset of Turbulent Fluidization

    Get PDF
    Heat transfer coefficients were measured in 0.29 m ID and 1.56 m ID fluidization columns with the same heater tube, identical alumina particles and geometrically scaled distributors. The maximum coefficients occurred in the turbulent fluidization flow regime. The Froude number based on superficial velocity and column diameter captures the scale-up effect well, so long as the heater is located in a region of similar flow structure

    Sulfur analysis of Bolu-Mengen lignite before and after microbiological treatment using reductive pyrolysis and gas chromatography/mass spectrometry

    Get PDF
    Atmospheric pressure-temperature programmed reduction coupled with on-line mass spectrometry (AP-TPR/MS) is used for the first time on microbiologically treated coal samples as a technique to monitor the degree of desulfurization of the various sulfur functionalities. The experimental procedure enables the identification of both organic and inorganic sulfur species present in the coal matrix. A better insight in the degradation of the coal matrix and the accompanying processes during the AP-TPR experiment is obtained by a quantitative differentiation of the sulfur. The determination of the sulfur balance for the reductive pyrolysis gives an overview of the side reactions and their relative contribution in the total process. The volatile sulfur species are unambiguously identified using AP-TPR off-line coupled with gas chromatography/mass spectrometry (GC/MS). In this way, fundamental mechanisms and reactions that occur during the reductive pyrolysis could be quantified, explaining the differences in AP-TPR recoveries. Therefore, this study gives a clearer view on the possibilities and limitations of AP-TPR as a technique to monitor sulfur functionalities in coal

    Reducing insecticide use in broad-acre grains production: An Australian study

    Get PDF
    Prophylactic use of broad-spectrum insecticides is a common feature of broad-acre grains production systems around the world. Efforts to reduce pesticide use in these systems have the potential to deliver environmental benefits to large areas of agricultural land. However, research and extension initiatives aimed at decoupling pest management decisions from the simple act of applying a cheap insecticide have languished. This places farmers in a vulnerable position of high reliance on a few products that may lose their efficacy due to pests developing resistance, or be lost from use due to regulatory changes. The first step towards developing Integrated Pest Management (IPM) strategies involves an increased efficiency of pesticide inputs. Especially challenging is an understanding of when and where an insecticide application can be withheld without risking yield loss. Here, we quantify the effect of different pest management strategies on the abundance of pest and beneficial arthropods, crop damage and yield, across five sites that span the diversity of contexts in which grains crops are grown in southern Australia. Our results show that while greater insecticide use did reduce the abundance of many pests, this was not coupled with higher yields. Feeding damage by arthropod pests was seen in plots with lower insecticide use but this did not translate into yield losses. For canola, we found that plots that used insecticide seed treatments were most likely to deliver a yield benefit; however other insecticides appear to be unnecessary and economically costly. When considering wheat, none of the insecticide inputs provided an economically justifiable yield gain. These results indicate that there are opportunities for Australian grain growers to reduce insecticide inputs without risking yield loss in some seasons. We see this as the critical first step towards developing IPM practices that will be widely adopted across intensive production systems. © 2014 Macfadyen et al
    corecore