27 research outputs found

    Effects of rarefaction on cavity flow in the slip regime

    Get PDF
    The Navier-Stokes-Fourier equations, with boundary conditions that account for the effects of velocity-slip and temperature-jump, are compared to the direct simulation Monte Carlo method for the case of a lid-driven micro-cavity. Results are presented for Knudsen numbers within the slip-flow regime where the onset of nonequilibrium effects are usually observed. Good agreement is found in predicting the general features of the velocity field and the recirculating flow. However, although the steady-state pressure distributions along the walls of the driven cavity are generally in good agreement with the Monte Carlo data, there is some indication that the results are starting to show noticeable differences, particularly at the separation and reattachment points. The modified Navier-Stokes-Fourier equations consistently overpredict the maximum and minimum pressure values throughout the slip regime. This highlights the need for alternative boundary formulations or modeling techniques that can provide accurate and computationally economic solutions over a wider range of Knudsen numbers

    Micro-scale cavities in the slip - and transition - flow regimes

    Get PDF
    Differences between Navier-Stokes-Fourier (NSF) slip/jump solutions and direct simulation Monte-Carlo (DSMC) computations are highlighted for a micro lid-driven cavity problem. The results indicate a need for better modelling techniques which at the same time retain low computational cost of NSF models. We also highlight the fact thatmany micro-flows that have been considered are simple planar flows and typical classification systems are defined on such flows. We show that for complex flows, such as thedriven cavity, non-equilibrium effects are more appreciable and their onset occurs at lower Knudsen numbers than expected

    The genetic study of three population microisolates in South Tyrol (MICROS): study design and epidemiological perspectives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing evidence of the important role that small, isolated populations could play in finding genes involved in the etiology of diseases. For historical and political reasons, South Tyrol, the northern most Italian region, includes several villages of small dimensions which remained isolated over the centuries.</p> <p>Methods</p> <p>The MICROS study is a population-based survey on three small, isolated villages, characterized by: old settlement; small number of founders; high endogamy rates; slow/null population expansion. During the stage-1 (2002/03) genealogical data, screening questionnaires, clinical measurements, blood and urine samples, and DNA were collected for 1175 adult volunteers. Stage-2, concerning trait diagnoses, linkage analysis and association studies, is ongoing. The selection of the traits is being driven by expert clinicians. Preliminary, descriptive statistics were obtained. Power simulations for finding linkage on a quantitative trait locus (QTL) were undertaken.</p> <p>Results</p> <p>Starting from participants, genealogies were reconstructed for 50,037 subjects, going back to the early 1600s. Within the last five generations, subjects were clustered in one pedigree of 7049 subjects plus 178 smaller pedigrees (3 to 85 subjects each). A significant probability of familial clustering was assessed for many traits, especially among the cardiovascular, neurological and respiratory traits. Simulations showed that the MICROS pedigree has a substantial power to detect a LOD score ≄ 3 when the QTL specific heritability is ≄ 20%.</p> <p>Conclusion</p> <p>The MICROS study is an extensive, ongoing, two-stage survey aimed at characterizing the genetic epidemiology of Mendelian and complex diseases. Our approach, involving different scientific disciplines, is an advantageous strategy to define and to study population isolates. The isolation of the Alpine populations, together with the extensive data collected so far, make the MICROS study a powerful resource for the study of diseases in many fields of medicine. Recent successes and simulation studies give us confidence that our pedigrees can be valuable both in finding new candidates loci and to confirm existing candidate genes.</p

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Electric moments in molecule interferometry

    Get PDF
    We investigate the influence of different electric moments on the shift and dephasing of molecules in a matter wave interferometer. Firstly, we provide a quantitative comparison of two molecules that are non-polar yet polarizable in their thermal ground state and that differ in their stiffness and response to thermal excitations . While C 25 H 20 is rather rigid, its larger derivative C 49 H 16 F 52 is additionally equipped with floppy side chains and vibrationally activated dipole moment variations. Secondly, we elucidate the role of a permanent electric dipole moment by contrasting the quantum interference pattern of a (nearly) non-polar and a polar porphyrin derivative. We find that a high molecular polarizability and even sizeable dipole moment fluctuations are still well compatible with high-contrast quantum interference fringes. The presence of permanent electric dipole moments, however, can lead to a dephasing and rapid degradation of the quantum fringe pattern already at moderate electric fields. This finding is of high relevance for coherence experiments with large organic molecules, which are generally equipped with strong electric moments

    Genetic Structure in Contemporary South Tyrolean Isolated Populations Revealed by Analysis of Y-Chromosome, mtDNA, and Alu Polymorphisms

    No full text
    Most of the inhabitants of South Tyrol in the eastern Italian Alps can be considered isolated populations because of their physical separation by mountain barriers and their sociocultural heritage. We analyzed the genetic structure of South Tyrolean populations using three types of genetic markers: Y-chromosome, mitochondrial DNA (mtDNA), and autosomal Alu markers. Using random samples taken from the populations of Val Venosta, Val Pus-teria, Val Isarco, Val Badia, and Val Gardena, we calculated genetic diversity within and among the populations. Microsatellite diversity and unique event polymorphism diversity (on the Y chromosome) were substantially lower in the Ladin-speaking population of Val Badia compared to the neighboring German-speaking populations. In contrast, the genetic diversity of mtDNA haplotypes was lowest for the upper Val Venosta and Val Pusteria. These data suggest a low effective population size, or little admixture, for the gene pool of the Ladin-speaking population from Val Badia. Interestingly, this is more pronounced for Ladin males than for Ladin females. For the pattern of genetic Alu variation, both Ladin samples (Val Gardena and Val Badia) are among the samples with the lowest diversity. An admixture analysis of one German-speaking valley (Val Venosta) indicates a relatively high genetic contribution of Ladin origin. The reduced genetic diversity and a high genetic differentiation in the Rhaetoroman-and German-speaking South Tyrolean populations may constitute an important basis for future medical genetic research and gene mapping studies in South Tyrol
    corecore