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Effects of Rarefaction on Cavity Flow in the Slip Regime

Simon Mizzi'-2*, David R. Emerson?, Stefan K. Stefanov?,
Robert W. Barber?, and Jason M. Reese’

" Department of Mechanical Engineering, University of Strathclyde, Glasgow G1 1XJ, United Kingdom
2 Centre for Microfluidics and Microsystems Modelling, CCLRC Daresbury Laboratory,
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3 Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 4, Sofia 1113, Bulgaria

The Navier-Stokes-Fourier equations, with boundary conditions that account for the effects of
velocity-slip and temperature-jump, are compared to the direct simulation Monte Carlo method for
the case of a lid-driven micro-cavity. Results are presented for Knudsen numbers within the slip-
flow regime where the onset of nonequilibrium effects are usually observed. Good agreement is
found in predicting the general features of the velocity field and the recirculating flow. However,
although the steady-state pressure distributions along the walls of the driven cavity are generally
in good agreement with the Monte Carlo data, there is some indication that the results are starting
to show noticeable differences, particularly at the separation and reattachment points. The modi-
fied Navier-Stokes-Fourier equations consistently overpredict the maximum and minimum pressure
values throughout the slip regime. This highlights the need for alternative boundary formulations
or modeling techniques that can provide accurate and computationally economic solutions over a
wider range of Knudsen numbers.

Keywords: Microfluidics, Cavity Flow, Slip Regime, Non-Equilibrium Phenomena, Knudsen

Number.

1. INTRODUCTION

The use of micro-electro-mechanical systems (MEMS) has
been proposed in many applications, including industrial
engineering, biomedical analyses, environmental control,
micro-processor cooling and high-precision printing. As a
result, terms such as micro-ducts, micro-heat-exchangers,
micro-pumps, and micro-sensors are now commonly used
in many diverse fields. One area where the research com-
munity is particularly active is trying to understand gas
dynamics in micron and sub-micron sized domains. The
flow characteristics in miniaturized systems are known
to differ significantly from those found in conventional
devices. For example, the Navier-Stokes-Fourier (NSF)
equations with no-slip boundary conditions are no longer
valid when the characteristic length scale enters the micron
range.’

The inadequacy of the NSF equations in modeling gas
dynamics in micron-sized domains can be explained by the
fact that they are only able to describe flows that are close
to thermodynamic equilibrium. However, at small length
scales, nonequilibrium effects are frequently observed in

*Author to whom correspondence should be addressed.

gas flows. Collisions between the molecules are the only
mechanism for a gas to maintain equilibrium. If a gas is
too rarefied or confined in a micro-geometry, the number
of intermolecular collisions will be significantly reduced
and nonequilibrium effects will start to dominate. The
degree of rarefaction of a gas is defined through the
Knudsen number, Kn, which is given by Kn = A/L, where
A is the mean free path (i.e. the average distance travelled
by the gas molecules between successive collisions) and L
is the characteristic size of the domain.

The majority of numerical studies to date have mainly
involved simple geometries, such as planar channels
(Couette flow, Poiseuille flow) or annular configurations
(cylindrical Couette flow), where the aim has been to
improve our understanding of near-wall flow phenomena.
In this paper, we focus on how the nonequilibrium physics
will affect the predicted flow field in a geometrically sim-
ple but complex flow environment. The lid-driven cavity
will therefore be used to highlight how the NSF equations,
modified to take into account the effects of velocity-slip
and temperature-jump, perform in a recirculating flow. In
the absence of experimental data, the NSF predictions are
compared to results obtained using the direct simulation
Monte Carlo (DSMC) method.
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2. MODELING APPROACHES

The Boltzmann equation is the fundamental governing

equation for a dilute gas undergoing binary collisions. The

basic form of the Boltzmann equation can be written as
aof af af _af

T Y T e,

1
dt ax; O

where f is the particle distribution function which is a
function of time, ¢, the position vector, x;, and the molec-
ular velocity vector, c;. The term on the right-hand side
of Eq. (1), df/dt|c, is a production term for f resulting
from the binary collisions and is commonly referred to as
the collision operator. The Boltzmann equation is able to
describe gases that are in equilibrium and nonequilibrium
alike but its solution is a non-trivial task due to the com-
plexity of the collision term.

Various methods have been proposed to simplify Eq. (1)
with each method attempting to retain an acceptable level
of accuracy in describing the fundamental physics. There
are essentially two main approaches for simulating rar-
efied gases; in one approach, discrete molecular modeling
is used to describe the fluid through a microscopic for-
malism, i.e. as a collection of moving molecules which
interact through collisions or very close proximity poten-
tials. Discrete modeling can be performed using either
statistical ensemble averages, as in the direct simulation
Monte Carlo approach,? or through deterministic meth-
ods, such as molecular dynamics.? Although discrete meth-
ods achieve a realistic representation of the microscopic
behavior, their application has been restricted to geomet-
rically simple flows due to their computationally inten-
sive nature.* However, the information preservation (IP)
method™ ® may offer a promising approach for reducing the
computational requirements of DSMC techniques while
Baker and Hadjiconstantinou’ have recently demonstrated
that the statistical scatter associated with Monte Carlo
methods can be reduced by considering only the deviation
from the equilibrium condition.

An alternative approach is to retain a continuum formu-
lation to develop simpler representations of the Boltzmann
equation. In this case, the fluid is assumed to be continu-
ous and infinitely divisible so that velocity, density, pres-
sure, and other properties can readily be defined at any
point in space and time. One such approach is through
the use of an extended hydrodynamic approximation of
Eq. (1). This can be obtained by performing a Chapman-
Enskog expansion,® where the distribution function, f, is
expanded in a power series based on the Knudsen number.
The power series can be truncated at any power of Kn and
will yield the Euler, NSF, Burnett, or higher-order descrip-
tions. Another approach is the method of moments®!!
where the distribution function is multiplied by a function
that depends only on the molecular velocity. The transport
equations can then be derived from a power series involv-
ing Hermite polynomials. It should be noted that there are
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a number of challenges with the foregoing approaches. For
example, the Burnett equations have stability issues and
are unable to capture Knudsen layers whilst moment meth-
ods do not provide a closed system and also require addi-
tional boundary conditions. However, there are advantages
in these approaches because they are globally second-order
(or higher) in Knudsen number and will naturally recover
the NSF equations when the Knudsen number is small.

Alternatively, it is possible to combine the NSF equa-
tions with simple phenomenological extensions. Such
techniques include the application of velocity-slip'? and
temperature-jump'> boundary conditions. It is also possi-
ble to develop second-order boundary conditions for the
velocity-slip!* 1 or to derive more accurate boundary con-
ditions based on higher-order constitutive relations, such
as the Burnett equations.'® These techniques improve the
accuracy of mass flow rate predictions but often fail to cap-
ture nonlinear phenomena in the near-wall region. More
recently, the development of constitutive law re-scaling, in
the form of a wall function,'” has been shown to offer the
potential of replicating the nonlinear stress/strain behav-
ior in the vicinity of solid walls. For the present analysis,
we use a boundary formulation derived from Grad’s 13
moment equations.!!

3. CLASSIFICATION OF THE FLOW REGIME

Several distinct regimes can be defined that characterize
the state of a particular flow:!

e For Kn < 0.001, the flow is in the continuum regime and
the conventional no-slip boundary condition is considered
to be valid since the flow is in thermodynamic equilibrium.
e For 0.001 < Kn < 0.1, the gas is in the slip-flow regime.
The NSF equations are considered to be adequate provided
the effects of velocity-slip and temperature-jump at the
wall are taken into account.

e For 0.1 < Kn < 10, the flow is said to be in the transi-
tion regime. The use of the NSF equations becomes ques-
tionable and alternative approaches are needed to model
such flows using either discrete (particle-based) methods,
extended hydrodynamics, or the method of moments.

e For Kn > 10, the flow is in the free-molecular regime. In
this regime, the frequency of intermolecular collisions is
very low and the mean free path is large compared to the
characteristic length scale of the flow domain. The con-
tinuum hypothesis is no longer valid and a collisionless
form of the Boltzmann equation can be used to describe
the flow.

The limiting Knudsen numbers in the above classifica-
tion scheme are somewhat empirical, and are generally
based upon simple flows that have a predominant flow
direction and pronounced gradients normal to the stream-
wise direction, e.g., Couette or Poiseuille flow. In the case
of more complex flows, however, the boundaries between
the different regimes may depend upon the particular
geometric details of the problem. As will be demonstrated
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later for a driven-cavity flow, nonequilibrium effects are
discernible at Knudsen numbers well below the conven-
tionally accepted upper limit of the slip-flow regime.

4. THE DRIVEN CAVITY PROBLEM

Cavities, steps and cut-outs occur frequently in many
engineering designs. Such configurations generate sharp
changes in the flow variables and their gradients. At the
macroscopic scale, modeling the flow phenomena asso-
ciated with cavities is challenging, particularly at high
Mach numbers. However, at the microscale, other com-
plexities can arise due to the loss of local thermodynamic
equilibrium.

The lid-driven cavity, shown schematically in Figure 1,
has been extensively investigated in a completely differ-
ent context since the problem is often used as a validation
test for numerical schemes. Despite its geometric simplic-
ity, the problem is rich in flow physics associated with the
recirculating eddy. Many of the investigations in the liter-
ature are presented in an incompressible NSF framework
and are solved using either a pressure—velocity coupling
or a streamfunction-vorticity formulation.'® ! In general,
the objective of these studies is to investigate the effective-
ness of convective numerical schemes over a wide range
of Reynolds numbers.

In the present paper, we investigate a micro-scale lid-
driven cavity since very few studies are available for rar-
efied cavity flows. Su et al.?® presented solutions obtained
using the Bhatnagar-Gross-Krook (BGK) approximation
of the Boltzmann equation while Jiang et al.?! compared
the DSMC and information preservation (IP) methods, and
investigated the validity of the IP method for low-speed
flows. More recently, Naris and Valougeorgis®* have con-
ducted a comprehensive study of the driven cavity prob-
lem over the whole Knudsen number regime using the
discrete velocity method to solve the linearized Boltzmann
equation. They showed that for low Mach number flows,

A D

Fig. 1. Schematic diagram of a driven cavity.
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the temperature variations were small. In the present study,
we compare NSF predictions with results obtained from
the DSMC method. In particular, we highlight some of the
limitations of the NSF approach in the slip-flow regime.

5. NUMERICAL SOLUTION OF THE
NSF EQUATIONS

The Navier-Stokes-Fourier equations have been discretized
on a collocated grid using the finite-volume pressure-
velocity-density coupling approach proposed by Demirdzic
et al.?® Since the Reynolds number is relatively small, a
central-difference scheme is considered appropriate.?* The
central-difference scheme was implemented at cell bound-
aries for both the convective and diffusive fluxes while
the source terms were computed at cell centres. A mesh-
resolution study was carried out using grids composed of
40 x 40, 80 x 80 and 160 x 160 cells. In all test cases, the
results were numerically equivalent for the 80 x 80 and
160 x 160 grids. We present here only the grid-independent
results.

5.1. Velocity-Slip and Temperature-Jump
Boundary Conditions

The application of velocity-slip and temperature-jump
boundary conditions in the NSF equations is a simpli-
fied phenomenological approach to represent both non-
equilibrium and gas-surface interaction effects near the
solid walls. These boundary conditions were first proposed
by Maxwell'> and von Smoluchowski,'® respectively.
Using Grad’s closure approximation for the distribution
function, f, the boundary conditions can be written as:'!
Vigip = Vigas ~ Vigan

(=(2- U)/U)\/?\/ﬁ(alﬂjn/ _n[T/Anjnk) - %(ani —n;quny)

= 2
PRT + L7,n;n, @

and
T

vl
T

_ 2- O'T/O'T)\/%%ﬁl%cnk + %Tjknjnk Vi Vi

- p—l—%Tjknjnk 4RT
where v; - is the slip velocity at the wall, Vi and v; =~ are
the gas and wall velocities, T,,; and T are the wall and gas
temperatures, o and o, are the tangential momentum and
energy accommodation coefficients, respectively, and T;
and g; are the viscous stresses and heat flux. The term, n,,
is the normal vector, p is the pressure, p is the density, and
R is the specific gas constant. The terms, a;, a,, and (3,
are Knudsen layer correction coefficients and are
set to a; = 1.114, «a, = 1.34533, and B, = 1.127,
respectively!! while the tangential momentum and energy
accommodation coefficients are assumed to be unity.
A second-order one-sided difference scheme was used
to determine the required gradients for the boundary
conditions.

®)
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6. DIRECT SIMULATION MONTE CARLO
SOLUTION

The DSMC method used in this study follows the approach
proposed by Bird?> where the gas molecules are represented
by a much smaller number of “stochastic” particles. The
algorithm is divided into two main stages consisting of
translational movement of the particles and binary colli-
sions between the particles. Solid boundaries are taken into
account in the translational stage of the algorithm and a
special recursive treatment is implemented in the vicinity
of the corners of the cavity. A Maxwellian scattering ker-
nel with perfect accommodation is assumed at the walls
and the “no time counter” method is used to simulate the
collision interactions.

In the present paper, we are interested in the steady-
state solution. Since the DSMC method is a kinetic for-
mulation (i.e. dependent on time, molecular velocity, and
position), the macroscopic variables are computed using
time-averaged moments over a number of kinetic time
steps. The moments are spatially averaged within the cell
volumes. In particular, we have computed the following
moments: m, mc;, mc;c;/2, mTC] and mC;C;C;/2 where
m is the molecular mass and C; is the peculiar veloc-
ity defined as the deviation of the molecular velocity, c;,
from the average velocity u; (i.e. C; = ¢; — u;), the overbar
indicates time-averaged values and repeated indices rep-
resent the usual Einstein convention of tensor summation.
These averages yield moments corresponding to the den-
sity, bulk velocity, internal energy, viscous stress, and heat
flux, respectively.

The DSMC simulations employed a hard-sphere model
of argon with a molecular mass of 6.63 x 1072 kg and
a molecular diameter of 3.42 x 107! m. The computa-
tional domain was discretized using a uniform distribution
of cells with a grid resolution of either 50 x 50 or 60 x 60
cells, depending upon the Knudsen number. Typically, the
DSMC simulations employed 50 particles per cell although
this was increased to approximately 300 particles per cell
for the lowest Knudsen number case. Over 10 million sam-
pling time steps were used to reduce the statistical scatter
in the DSMC results.

7. RESULTS AND DISCUSSION

The lid-driven cavity has been investigated for two
Knudsen numbers, Kn = 0.05 and Kn = 0.1. For conve-
nience, the results are presented in a nondimensional form
given by the following:

x=" y=2 g% p_Pr
L L L P,
v
U=-—- and V=-2 4)
lid Usa

where x; and x, are the horizontal and vertical distances,
respectively, L is the cavity length, s is the distance along
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Fig. 2. Velocity streamlines for Kn = 0.05: (a) NSF solution and
(b) DSMC data.

the walls of the cavity (starting from A in Fig. 1 and pro-
gressing in a clockwise direction), P, is the initial pres-
sure in the cavity (P, = 101135 N m~2), v, and v, are the
velocity components in the x; and x, directions, and Uy is
the velocity of the moving wall. The upper case symbols
represent the nondimensional quantities.

Figures 2 and 3 compare the streamlines predicted by
the NSF and DSMC approaches at the two Knudsen num-
bers. The simulations have considered a driven cavity with
a unit aspect ratio. In both cases, the Mach number, defined
as Ma = Uy/,/2RT,, where T, is the reference tempera-
ture (273 K), was 0.09. In general, the agreement between
the two modeling approaches is very good and the NSF
equations predict the overall features of the flow with rea-
sonable accuracy, including the location of the centre of
the eddy. Figure 4 compares the predicted velocity pro-
files along the centreline of the cavity (x,/L = 0.5 and
x,/L = 0.5). Once again, the two modeling approaches
yield very similar results but the NSF equations overpre-
dict the velocity-slip along the moving wall at Kn = 0.1.
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Fig. 3. Velocity streamlines for Kn = 0.1: (a) NSF solution and
(b) DSMC data.

In the cases considered, the flow field consists of a single
primary recirculating eddy with the flow having insuffi-
cient inertia to generate secondary vortices in the corners
of the cavity.

Figure 5 shows the nondimensional pressure distribution
along the walls of the cavity. For both Knudsen numbers, it
can be seen that there is reasonable agreement between the
NSF solution and the DSMC predictions. However, in both
cases, the NSF predictions show considerable discrepan-
cies in the vicinity of the upper left-hand and right-hand
corners of the cavity (S =1 and S =2), where separa-
tion and reattachment occur. The DSMC predictions are
very similiar to the pressure distributions obtained by Jiang
et al.?! In contrast, the NSF equations overestimate the
pressure difference between these two corner points (B and
C in Figure 1) leading to an incorrect pressure distribution
along the moving wall of the cavity. The accurate predic-
tion of reattachment pressures is particularly important and
the present results show that, for the driven cavity prob-
lem, nonequilibrium effects are causing inaccuracies well
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Fig. 4. Velocity profiles along the centreline of the cavity (x,/L = 0.5
and x,/L =0.5): (a) Kn=0.05 and (b) Kn = 0.1. Comparison of DSMC
data (e) and the NSF solution (—).

before the conventionally-accepted upper limit of the slip-
flow regime.

8. CONCLUSIONS

A comparison between the Navier-Stokes-Fourier equa-
tions and the direct simulation Monte Carlo method has
been carried out for a driven micro-cavity problem. The
NSF equations are normally assumed to be valid up to
a Knudsen number of Kn = 0.1 and good agreement has
been observed for many aspects of the flow. However, for
this particular problem, the predicted pressure along the
moving wall is clearly affected by nonequilibrium effects
resulting in an overprediction of the pressure difference
at the separation and reattachment locations. Surprisingly,
this feature was observed at a Knudsen number as low
as 0.05. This failure in the NSF equations was unexpected
at such a low value of Kn and highlights the need for
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Fig. 5. Pressure distribution along the cavity walls: (a) Kn =0.05 and
(b) Kn =0.1. Comparison of DSMC data (e) and the NSF solution (—).

alternative boundary treatments or modeling approaches
that can provide accurate and computationally economic
solutions over a wider range of Knudsen numbers.
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