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Abstract

We investigate a power-law probability distribution function to describe the mean free

path of rarefied gas molecules in non-planar geometries. A new curvature-dependent

model is derived by taking into account the boundary-limiting effects on the molec-

ular mean free path for surfaces with both convex and concave curvatures. The

Navier-Stokes constitutive relations and the velocity-slip boundary conditions are

then modified based on this power-law scaling through the transport property ex-

pressions in terms of the mean free path. Velocity profiles for isothermal cylindrical

Couette flow are obtained using this power-law model and compared with direct sim-

ulation Monte Carlo (DSMC) data. We demonstrate that our model is more accurate

than the classical slip solution, and we are able to capture important non-linear trends

associated with the non-equilibrium physics of the Knudsen layer. In addition, we

establish a new criterion for the critical accommodation coefficient that leads to the

non-intuitive phenomenon of velocity inversion. The power-law model predicts that

the critical accommodation coefficient is significantly lower than that calculated us-

ing the classical slip solution, and is in good agreement with available DSMC data.

Our proposed constitutive scaling for non-planar surfaces is based on simple physical

arguments and can be readily implemented in conventional fluid dynamics codes for

arbitrary geometric configurations of microfluidic systems.

Keywords : molecular mean free path, Knudsen layer, cylindrical Couette flow, velocity

inversion, curvature effects, gas micro flows, rarefied gas dynamics
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1 Introduction

In rarefied/micro gas flows, the behavior of the gas near a solid boundary is dominated

by surface and near-surface interactions and leads to the formation of a Knudsen layer.

This is a local thermodynamically non-equilibrium region of thickness O(λ) from the sur-

face, where λ is the mean free path (MFP) of the gas. In this Knudsen layer, molecular

collisions are considerably modified due to the presence of the solid boundary with a cor-

responding reduction in the mean time between collisions, i.e. the MFP of the gas will

effectively be reduced and will also vary non-linearly in this thin layer (Stops 1970). Linear

constitutive relations for shear stress and heat flux are also no longer valid in the Knudsen

layer (Burnett 1935, Grad 1949, Chapman and Cowling 1970).

The behavior of a rarefied gas can accurately be described by the Boltzmann equa-

tion (Cercignani 1988, Sone 2002). However, directly solving the Boltzmann equation

for practical applications remains computationally challenging due to the complicated

structure of the molecular collision term. The direct simulation Monte Carlo (DSMC)

method (Bird 1994) provides an excellent alternative approach for solving high-speed rar-

efied flows. Unfortunately, the computational cost of the DSMC method for low-speed

flows in the slip- and transition-flow regimes is still formidable. Many researchers de-

veloping engineering applications have instead proposed modifications to the velocity-slip

boundary condition originally proposed by Maxwell (1879). This has generally led to first-

and second-order treatments of the velocity gradient at the wall (see Beskok 2001, Barber

and Emerson 2006), but with limited success because this approach fails to reproduce the

non-linear stress/strain-rate relationship observed in the Knudsen layer.

Alternative strategies are to introduce a slip coefficient that depends on the Knudsen

number (Bahukudumbi et al. 2003) or to introduce an effective viscosity term. The latter

approach has met with some engineering success (Veijola et al. 1995; Bahukudumbi et

al. 2003; Dongari et al. 2009) but has relied on fitting data to solutions from the Boltzmann

equation. Cercignani (1988) used kinetic theory to propose a “wall-function” that scaled

with the mean free path. This introduces a function that complements the constitutive

relations, effectively modifying the viscosity, and is able to capture some non-equilibrium

behavior of the Knudsen layer. This idea has been adopted and extended (e.g. Lockerby

et al. 2005; Zhang et al. 2006; Lilley and Sader 2008; Lockerby and Reese 2008; Dongari et

al. 2010) with some success.

Recently, Dongari et al. (2011a) carried out molecular dynamics (MD) studies of gases

and the results indicate that molecules perform Lévy-type flights under rarefied conditions,

i.e. the free paths of gas molecules follow a power-law (PL) distribution. Consequently,

they hypothesized that the probability distribution function for the molecular free paths

of a rarefied gas followed a PL form, and this was validated against the MD data under

various rarefied conditions. Using a PL distribution to describe free paths, Dongari et
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al. (2011b) derived an effective MFP model for flows confined by planar surfaces by taking

into account the solid boundary effects and they obtained good agreement with the MD data

up to the early transition regime. In addition, they modified the Navier-Stokes constitutive

relations using this PL-based MFP scaling and were then able to accurately capture the non-

equilibrium effects in the Knudsen layer for isothermal pressure-driven gas flows between

planar parallel walls.

A fundamental non-planar test case concerns the flow between two concentric cylinders.

This is a classical fluid dynamics problem that is treated for the no-slip case in many well-

known textbooks (e.g. Schlichting 1979). However, under certain conditions, the flow

between the cylinders can exhibit highly non-intuitive behavior. For example, if the outer

cylinder is stationary and the inner cylinder is rotating, it is possible for the velocity profile

to become inverted i.e. the velocity will increase from the inner to the outer cylinder

wall. This unusual phenomenon was first predicted by Einzel et al. (1990) for the case of

liquid helium. Tibbs et al. (1997) extended the analysis to the case of a rarefied gas and,

using DSMC, demonstrated that velocity inversion could occur provided the tangential

momentum accommodation coefficient (TMAC) for the surfaces was small. (See Agrawal

and Prabhu 2008a, and Agrawal and Prabhu 2008b for detailed reviews on TMAC values.)

This early work has led to a number of important curvature studies for rotating Couette

flow (e.g. Aoki et al. 2003; Lockerby et al. 2004; Barber et al. 2004; Yuhong et al. 2005;

Myong et al. 2005; Kim 2009; Guo et al. 2011) and oscillating Couette flow (Emerson

et al. 2007). These confirmed the existence of velocity inversion for small values of the

TMAC and also showed that the phenomenon could be related to a critical accommodation

coefficient. Indeed, Yuhong et al. (2005) derived an analytical criterion for the critical

accommodation coefficient and also showed that velocity inversion was solely dependent on

the value of the TMAC associated with the outer cylinder.

In this paper, we build on the approach of Dongari et al. (2011b and 2011c) and derive

a PL-based effective MFP model for non-planar surfaces by incorporating the effects of

curvature. We develop a curvature-dependent MFP solution for both convex and concave

surfaces, and extend this analysis to deduce the effective MFP for a gas confined between

two concentric cylinders. In addition, constitutive relations and velocity-slip boundary

conditions are modified in accordance with the kinetic theory of gases, and tested for the

classical case of isothermal rarefied Couette flow between two concentric rotating cylinders.

The modified governing equations are solved for low-speed gas flows, and semi-analytical

solutions are derived for the velocity profiles and the critical accommodation coefficient for

velocity inversion. Our PL model results are compared with an existing slip model (Yuhong

et al. 2005), the linearized BGK solution (Aoki et al. 2003), and DSMC data (Tibbs et

al. 1997; Stefanov et al. 2006). We show that our PL model captures important non-linear

trends associated with the physics of cylindrical Couette gas flows in the transition regime.
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2 Geometry-dependent molecular mean free path

We consider a homogeneous gas, where molecules moving at an average speed v and expe-

riencing an inter-molecular collision rate of θ̇v have a molecular mean free path λ = v/θ̇v.

Kinetic theory-based classical expressions for the probability distribution of the free paths

and the mean free path are, respectively (Kennard 1938):

ψ(r) =
1

λ
exp

(
−|r|
λ

)
, (1)

λ =
m/NAv

πρδ2
√
2
, (2)

where |r| is the distance, given by vt, that has been traveled by a molecule at time t,

NAv = 6.0221415 × 1023 is Avogadro’s number, m is the mass of a molecule, ρ is the gas

density, and δ is the hard-sphere diameter of the gas molecules.

MD results (Dongari et al. 2011a) show that the exponential distribution function for

free paths (Eq. 1) is only valid when the gas is in thermodynamic equilibrium. Under

non-equilibrium conditions, the MD data exhibit long-tail behavior (i.e. molecules perform

Lévy-type flights) whereas the exponential distribution has a faster decay. Montroll and

Scher (1973) pointed out that a finite moment of the probability distribution function im-

plies an exponential character of the randomness. Results obtained using exponential forms

of the distribution functions are applicable only to homogeneous media at equilibrium. A

distribution function with diverging higher-order moments (such as the standard deviation)

is essential to describe non-equilibrium transport (Montroll and Scher 1973). Instead of

the classical exponential form of distribution function, Dongari et al. (2011a, 2011b) have

recently hypothesized the following power-law form for the free path distribution function

for a non-equilibrium gas MFP, which satisfies the requirements for diverging higher-order

moments:

ψ(r) = B(a+ r)−n, (3)

where a and B are constants with positive values that are determined through the zero and

first moments. The range of values for the exponent n can be obtained by making one of

the higher-order moments divergent. Zero and first moments are given as follows:

1 =

∫
0

∞
B(a+ r)−ndr, (4)

λ =

∫
0

∞
Br(a+ r)−ndr. (5)

Equation 4 requires the probability to range from zero to one while Eq. 5 defines the

unconfined, conventional MFP value, λ. It then follows that

B = (n− 1)an−1, (6)
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and

a = λ(n− 2). (7)

To develop an expression for the effective mean free path, we have adopted the approach

proposed by Dongari et al. (2011b), based on an integral form of the probability distribution

function, i.e.

p(r) =

∫
0

r

ψ(r)dr =

[
1−

(
1 +

r

a

)1−n
]
, (8)

where p(r) describes the probability a molecule travels a distance r without experiencing

a collision.

The probability distribution function has to be real and positive and thus a > 0 and

n > 2. As n→ ∞, the distribution function will have finite moments, which is the condition

required of an equilibrium distribution function. For a finite n, the distribution function

describes a system deviating from equilibrium. So n acts as a decisive parameter to define

the extent of the deviation from equilibrium. If we require the ith moment to be diverging,

then nmax = i + 1. In the current paper, all our power-law (PL) model results have been

obtained for n = 3, unless otherwise explicitly stated. Dongari et al. (2011a) validated

the PL free path distribution function (Eq. 3) with MD simulations under various rarefied

conditions.

Following a similar approach to that adopted by Dongari et al. (2011b), here we derive

an effective mean free path model for non-planar surfaces based on a PL form of the free

path distribution. Our model is derived for two generalized non-planar cases: (i) gas around

a cylinder of radius R1, i.e. a surface with convex curvature, and (ii) gas inside a cylinder

of radius R2, i.e a surface with concave curvature. Both convex and concave curvature

models are then used to deduce an effective MFP model for gas confined between concentric

cylinders.

In the following discussion (also see Figure 5) we use the notation R− if a test molecule

is placed above a cylinder/surface with convex curvature, and R+ if the molecule is placed

inside the cylinder/surface with concave curvature. We also use the notations θ− and θ+

for the equally probable zenith angle traveling direction of the molecule, towards convex

and concave surfaces, respectively.

2.1 Gas outside a solid cylinder

Figure 1a presents the situation of a gas molecule outside a solid cylinder of radius, R1, at

a distance r from the center of the cylinder. The traveling distance limit for a molecule

traveling towards the cylinder is denoted R−
u , and this is associated with a critical limit for

θ− defined as θ−u , above which the molecule passes the cylinder and travels back into the

bulk. This angle can be calculated by using the geometry of a formed right-angled triangle,
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Figure 1: (a) A gas molecule outside a solid cylinder and situated at a radial distance r from

the centre of the cylinder of radius R1. R
− is the travelling distance limit for a molecule

moving towards the cylinder surface, for a given zenith angle θ−. The largest travelling

distance R−
u is achieved for the zenith angle direction θ−u , above which the molecule by-

passes the cylinder surface and travels into the bulk. (b) A gas molecule inside a cylindrical

cavity of radius R2, at a wall normal distance of R2 − r, where r is the radial distance of

the molecule from the centre of the cylinder. The molecule has a traveling distance of R+

to the wall for a traveling direction of θ+, where θ+ is varied from 0 to π.

6



with its right angle at the point connecting the radius of the cylinder and R−
u which is

tangential to the cylinder. The following relation can then be found:

r2 = R2
1 +

(
R−

u

)2
. (9)

By using the relation R1 = r sin(θ−u ), the value of θ−u is obtained as:

θ−u = arcsin

(
R1

r

)
. (10)

The distance of the molecule away from the cylinder surface, R−, as a function of θ−,

can be determined in terms of r and R1 by using the cosine law:

R2
1 = r2 + (R−)2 − 2rR−cos(θ−), (11)

which is a simple quadratic in R−, whose root is given by

R−(r, θ−) = rcos(θ−)−
√

(rcos(θ−))2 +R2
1 − r2. (12)

The average distance a molecule travels to the cylinder’s surface, with respect to the

angle θ−, is achieved by the following integral mean value theorem:

⟨R−⟩ = 1

Ω

∫ Ω

0

R−(r, θ−)dθ−, (13)

where Ω is the solid angle subtended by the cylinder at a point in the base plane, at a

distance r (> R1) from the axis of the cylinder of length L, and which can be expressed as

(Guest 1960):

Ω = θ−u − 1

2

(( r

R1

)2

− 1

) 1
2

+ θ−u − π

2

L−2 +O
(
L−4

)
. (14)

If we consider the length of the cylinder L tending to infinity, then Ω can be simplified to

Ω = θ−u . (15)

Using Eq. 8, the mean free path of the molecules traveling in the direction of the cylinder

(a surface with convex curvature) is then,

λeff(conv) = λ

[
1− 1

θ−u

∫ θ−u

0

(
1 +

R−(r, θ−)

a

)(1−n)

dθ−

]
. (16)

The general mean free path expression is obtained by considering all possible molecular

traveling directions. This is achieved in a similar manner to the analysis for a gas confined

between planar parallel walls presented by Dongari et al. (2011b). In the case of planar

parallel walls, it is equally probable that a molecule travels towards one surface or the other.
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In the present case, solid angle theory is used to determine the likelihood of a molecule

traveling in the direction of the cylinder, as opposed to traveling towards the bulk; the

probabilities being expressed as θ−u /π and [1− (θ−u /π)], respectively. From this weighting,

the general expression for the effective mean free path of a gas placed outside a cylinder is:

λeff(o) = λeff(conv)

(
θ−u
π

)
+ λ

[
1−

(
θ−u
π

)]
, (17)

where λ is the unconfined mean free path. This equation can also be written as λeff(o) =

λ β(o)(r, R1/λ), where

β(o) =

(
θ−u
π

)[
1− 1

θ−u

∫ θ−u

0

(
1 +

R−(r, θ−)

a

)(1−n)

dθ−

]
+[

1−
(
θ−u
π

)]
, (18)

which is the normalized effective MFP based on a power-law distribution function, where

the subscript (o) denotes our considerations of gas molecules outside a cylindrical surface.

It should be noted that a is dependent on the mean free path (see Eq. 7) and r ≥ R1, as

the gas is outside the cylinder. For a given angle, Eq. 18 is dependent on r, R1 and λ, and

can be evaluated as a function of the non-dimensional wall-normal distance [(r −R1)/λ],

for a given b1 = R1/λ, the inverse of the normalized curvature. As b1 → ∞, the solution of

Eq. 18 should reduce to the planar case. Equation 18 can be computed numerically using

Simpson’s rule; in the present study, we have used 16 subintervals.

The solution of the effective mean free path for a convex surface must reduce to that

for a planar one-wall case when the radius of the cylinder tends to infinity. To verify this

limiting case, the normalized effective MFP solutions (i.e. β(o)) from Eq. 18, are plotted in

Fig. 2 for various values of b1 and are compared with the planar one-wall solution derived

by Dongari et al. (2011b). For a value of b1 = 3, the non-planar solution predicts a higher

β value at the surface and also exhibits a sharper gradient compared to the planar one-

wall case. Figure 2 shows that, as the radius R1 of the cylinder increases, our non-planar

solution tends to the planar solution.

2.2 Gas inside a hollow cylinder

Using a similar approach, it is possible to obtain the effective mean free path for gas

molecules inside a hollow cylinder of radius R2, i.e. for a surface with a concave curvature.

As illustrated in Fig. 1b, r is a target molecule’s radial distance from the centre of the

cylinder and R+ is the molecule’s distance to the wall if the molecule has a traveling

trajectory of θ+.
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Figure 2: Variation of the effective mean free path of gas molecules outside a solid cylin-

der (surface with a convex curvature) as a function of non-dimensional wall-normal dis-

tance [(r −R1)/λ]. Here, r ≥ R1, as the gas is placed outside the cylinder and on the

x-axis, r is varied by fixing R1 and λ, for a given value of b1. The MFP profiles for various

values of b1 (R1/λ) are illustrated to show the effect of the convex curvature and their

comparison with the planar one-wall solution (Dongari et al. 2011b).
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To calculate the effective mean free path, the wall distance of the molecule has first to

be calculated using the cosine law:

R2
2 = r2 + (R+)2 − 2rR+cos(θ+), (19)

where the molecule’s traveling trajectory θ+ can vary from 0 to π. The molecular traveling

distance to the wall, R+, depends on r and θ+ and can be expressed as:

R+(r, θ+) = −rcos(θ+) +
√
(rcos(θ+))2 +R2

2 − r2. (20)

The solid angle subtended by the cylinder at a point lying inside the cylinder is 2π.

Using quarter symmetry, it is sufficient to integrate θ+ from 0 to π/2. Using our PL

distribution to describe the molecular free paths (Eq. 8), the expression for the effective

mean free path of a gas molecule inside a cylinder (i.e. interacting with a surface with

concave curvature) is:

λeff(conc) = λ

[
1− 2

π

∫ π/2

0

(
1 +

R+(r, θ+)

a

)(1−n)

dθ+

]
, (21)

or the normalized expression:

β(i) =
λeff(conc)

λ
= 1− 2

π

∫ π/2

0

(
1 +

R+(r, θ+)

a

)(1−n)

dθ+, (22)

where the subscript (i) denotes that the gas molecules are located inside the cylinder.

Equation 22 is dependent on r, R2 and λ, and can be evaluated as a function of the non-

dimensional wall-normal distance [(R2 − r)/λ], for a given b2 = R2/λ. Here r ≤ R2, as the

gas is inside the cylinder.

In a similar manner to the convex case, the effective MFP solution for a concave surface

must also reduce to the planar one-wall case when the radius of the cylinder tends to infinity.

Figure 3 shows the variation of the normalized effective mean free path β(i), for various b2

values and a comparison with the planar one-wall solution (Dongari et al. 2011b). For a

value of b2 = 5, the non-planar solution predicts a lower β value at the surface and exhibits

a shallower gradient compared to the planar case. For higher values of b2, the non-planar

concave solution approaches the planar case. However, at the surface, even for b2 = 30, the

non-planar solution predicts a lower value of β(i)∼ 0.4691 compared to the corresponding

planar wall value of 0.5. This is due to the concave nature of the surface, where a molecule

will encounter more frequent collisions with the wall.

2.3 Gas confined between concentric cylinders

We now consider a gas between two concentric cylinders, with R1 and R2 being the radii of

the inner and outer cylinders, respectively. Let us consider a molecule situated at a distance
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Figure 3: Variation of the effective mean free path of a gas molecule inside a cylinder (i.e.

a bounding surface with concave curvature) as a function of non-dimensional wall-normal

distance [(R2 − r)/λ]. Here, r ≤ R2, as the gas is placed inside the cylinder and on the

x-axis, r is varied by fixing R2 and λ, for a given value of b2. The MFP profiles for various

values of b2 (R2/λ) are illustrated to show the effect of the concave curvature and their

comparison with the planar one-wall solution (Dongari et al. 2011b).
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r from the coincident centres of the two cylinders. The inner cylinder presents a surface

with convex curvature (Fig. 1a) to the molecule and the outer cylinder presents a surface

with a concave curvature (Fig. 1b). The probability of a molecule traveling towards the

inner and outer cylinder directions can be evaluated as θ−u /π and [1− (θ−u /π)], respectively.

Using Eqs. 16 and 21 and accounting for this weighting, the complete expression for the

effective mean free path of a gas confined between two concentric cylinders is:

λeff = λeff(conv)

(
θ−u
π

)
+ λeff(conc)

[
1−

(
θ−u
π

)]
, (23)

where we can then write λeff = λ β, so

β =

(
θ−u
π

)[
1− 1

θ−u

∫ θ−u

0

(
1 +

R−(r, θ−)

a

)(1−n)

dθ−

]
+

[
1−

(
θ−u
π

)][
1− 1

θ+u

∫ θ+u

0

(
1 +

R+(r, θ+)

a

)(1−n)

dθ+

]
, (24)

with

θ+u = π − θ−u . (25)

Here, β is the geometry-dependent MFP based on a power-law distribution function and

is dependent on the Knudsen number, Kn, through the mean free path, λ, and a geometry

constraint, R2/R1. The Knudsen number is defined as:

Kn =
λ

R2 −R1

. (26)

Figure 4a shows the variation of β between the inner and outer cylinders (with R2/R1 =

5/3) for various Knudsen numbers in the slip and early transition regimes. The MFP

profiles are sharper at the inner cylinder and shallower at the outer cylinder and they

are not symmetric about the midpoint of the gap between the cylinders. This finding

is in contrast to the solution for the planar parallel wall case, where the MFP profile is

symmetric about the midpoint of the gap between the surfaces (Dongari et al. 2011b).

The anti-symmetric effect increases with Knudsen number. The values of β are relatively

high at the inner cylinder surface compared to the outer cylinder, due to the convex and

concave curvature effects, respectively. The difference in the values of β at the inner and

outer cylinders is also dependent on the Knudsen number.

To illustrate further the curvature effects, Fig. 4b presents the ratio of the effective

MFPs from the non-planar and planar cases. The non-planar values, βNP, are obtained

from Eq. 24 for R2/R1 = 5/3 and βP, for the case of planar parallel walls, is evaluated

using Eq. 12 in Dongari et al. (2011b). For Kn = 0.01, the curvature effects are negligible,

except in a thin layer close to the surface of the outer cylinder. As the Knudsen number

12
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Figure 4: (a) Variation of β with normalized radial distance (r − R1)/(R2 − R1) between

two concentric cylinders with R2/R1 = 5/3 for various Knudsen numbers in the slip and

transition regimes. (b) Illustration of curvature effects through the ratio of the MFP

values for a gas confined between non-planar (NP) and planar (P) surfaces. The non-

planar solution is obtained from Eq. 24 and the planar solution is computed using Eq. 12

in Dongari et al. (2011b).
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increases, both the curvature and anti-symmetric effects become more pronounced, whereas

the difference in the values of β at the inner and outer cylinders decreases. The ratio

βNP/βP has its minimum at the outer cylinder for all Kn and its maximum at a position

close to the surface of the inner cylinder. However, this point moves away from the inner

cylinder with increasing Kn as the thickness of the Knudsen-layer increases.

3 Cylindrical Couette flow

3.1 Problem description and governing equations

To evaluate our PL-based effective MFP scaling for non-planar cases, we consider a rarefied

gas confined between two concentric rotating cylinders as shown in Fig. 5. The flow is

assumed to be fully developed, two-dimensional, isothermal, laminar and steady, with a

low Reynolds number (Re) so that inertial effects may be neglected.

With these assumptions, the governing flow equation in cylindrical coordinates is

1

r2
d

dr

(
r2τrϕ

)
= 0, (27)

where r is the radial coordinate, ϕ is the tangential coordinate, and τrϕ is the tangential

stress which is defined as:

τrϕ = µ

(
duϕ
dr

− uϕ
r

)
, (28)

where µ is the fluid dynamic viscosity and uϕ is the velocity of the fluid in the tangential

direction.

From the kinetic theory of gases, the fluid viscosity can be explained in terms of the

collisions between gas molecules, and of the free paths which the molecules describe between

collisions. The unconfined MFP is then related to the shear viscosity (Cercignani 1988):

µ = ρ
λ√

π/2RT
, (29)

where ρ is the gas density, R is the specific gas constant, and T the gas temperature.

Equation 29 is only valid for flows that are in quasi-equilibrium. Within the Knudsen

layer, the flight paths of the gas molecules are affected by the presence of a solid wall. If

we wish to use Eq. 29, we need to take into account the MFP affected by gas molecular

collisions with surfaces. If the unconfined expression for the MFP, λ, is replaced by our

effective and geometry-dependent mean free path, λeff (Eqs. 23 and 24), we obtain a non-

constant, geometry-dependent, effective viscosity, µeff, that can then be used to deduce a
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R2 = 5 l 

R1 = 3 l 

Figure 5: Schematic of Couette flow between concentric rotating cylinders.

non-linear stress/strain-rate relation:

τrϕ = µβ︸︷︷︸
µeff

(
duϕ
dr

− uϕ
r

)
. (30)

Substituting Eq. 30 into Eq. 27 results in the modified governing equation:

µ

r2
d

dr

[
r2β

(
duϕ
dr

− uϕ
r

)]
= 0. (31)

This needs to be solved in conjunction with the following slip boundary conditions at

the inner and outer cylinder surfaces, respectively:

uϕ|r=R1 = ω1R1 +
2− σ1
σ1︸ ︷︷ ︸
α1

λ

[
β

(
duϕ
dr

− uϕ
r

)]∣∣∣∣
r=R1

, (32)

uϕ|r=R2 = ω2R2 −
2− σ2
σ2︸ ︷︷ ︸
α2

λ

[
β

(
duϕ
dr

− uϕ
r

)]∣∣∣∣
r=R2

, (33)

where ω1 and ω2 are the angular velocities and σ1 and σ2 are the tangential moment

accommodation coefficients of the inner and outer cylinders, respectively.

The solution for the velocity profile can then be obtained as:

uϕ(r) = r

[
ω1 +

α1λC

R3
1

+G(r)C

]
, (34)

where

15



G(r) =

∫ r

R1

dr

r3β
, (35)

C =
ω2 − ω1[

H + α1λ
R3

1
+ α2λ

R3
2

] , (36)

H =

∫ R2

R1

dr

r3β
. (37)

When the effects of the Knudsen layer are neglected, i.e. the mean free path has no

geometry dependence, then Eq. 34 simply reduces to the velocity profile based on the

classical slip solution, as presented in Eq. 6 of Yuhong et al. (2005).

3.2 Results and discussion

To illustrate the phenomenon of velocity inversion, in the present study the outer cylinder

is kept stationary (ω2 = 0) and the inner cylinder is allowed to rotate. The radii of the

inner and outer cylinders are chosen to be 3λ and 5λ, respectively, making Kn = 0.5, and

the accommodation coefficients are initially assumed to be equal at the inner and outer

surfaces (σ1 = σ2 = σ). Figure 6a presents a comparison between our solution based on

the PL effective MFP (Eq. 34) and the DSMC data reported by Tibbs et al. (1997). The

PL model is in very good quantitative agreement with the DSMC results for the σ = 1.0

and 0.7 cases. The results show that the DSMC data and PL formulation follow the same

basic trends and predict an inverted velocity profile when the accommodation coefficient is

0.1. However, slight deviations are discernible at the surface of the outer cylinder for the

σ = 0.4 and 0.1 cases.

It is interesting to note that, for the specific case when the accommodation coefficients

of the inner and outer cylinders are the same, the family of velocity profiles all pass through

a common point that is independent of the value of the accommodation coefficient. This

intersection point in the PL profiles is fairly close to the point predicted by the DSMC

data, whereas the classical slip solution predicts this point closer to the outer cylinder, as

shown in Fig. 6b. The classical slip solution is unable to account for any variation in MFP

and fails to capture non-linear effects associated with the Knudsen layers at the inner and

outer cylinders. The discrepancies are greatest when σ = 1.0 but decrease as σ is reduced.

At very low values of σ, the PL and classical slip solutions are identical and yield the same

solid body rotation solution as σ → 0.

Figure 7 shows the case when the accommodation coefficient of the inner cylinder is

maintained at unity (σ1 = 1.0) whilst the accommodation coefficient of the outer cylinder

(σ2) is varied from 0.02 to 0.3. Normal (non-inverted), fully inverted and partially inverted

velocity profiles are seen in both the PL model results and our new DSMC data. For

the present study, we have adopted the standard DSMC algorithm originally proposed by
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Figure 6: Variation of the non-dimensional velocity [U∗ = uϕ/(ω1R1)] as a function of the

radial distance for cylindrical Couette flow with σ1 = σ2 = σ. Comparison of PL model

results against (a) DSMC data (Tibbs et al. 1997) and (b) the classical slip solution (Yuhong

et al. 2005). The results are presented for Kn = 0.5 and R2/R1 = 5/3.
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Bird (1994), with a small modification in the calculation of the maximum collision number

in a cell, as described by Stefanov et al. (1998). Weighting factors for improving the

particle number balance in the radial direction were not included in the present algorithm

since the simulations did not consider large ratios of cylinder radii (Emerson et al. 2007).

The present simulations employed a hard-sphere model for argon at STP conditions with

isothermal boundary conditions. The one-dimensional computational domain between the

cylinders was discretized using a uniform distribution of cells in the radial direction with a

typical grid resolution of 100 cells across the annular gap.

For the partially inverted cases in Fig. 7, both the PL model and the DSMC data predict

an initial decrease in velocity away from the inner cylinder, then an increase towards the

outer cylinder, and then another decrease in a very thin layer close to the surface of the

outer cylinder. This is in contrast to the predictions of the classical slip solution (Yuhong

et al. 2005) where the velocity profile has an initial decrease away from the inner cylinder

and then just an increase towards the outer cylinder. Our PL model is able to predict the

non-linear effects quite well, except very close to the surface of the outer cylinder, where

the DSMC data exhibit a sharp decrease in the velocity, which is not captured by our

model. Quantitative agreement with the DSMC data is good for σ2 > 0.2 and σ2 < 0.1.

The PL model exhibits a conventional velocity profile up to σ2 ∼ 0.25 and below that it

shows a partially inverted profile up to σ2 ∼ 0.10, whereas for the classical slip solution the

corresponding values are 0.4 and 0.2, respectively.

As mentioned in section 2, throughout this paper the value of the power-law exponent

has been fixed to n = 3 for all the reported results. Figure 8 demonstrates the effect of the

value of n on the structure of the velocity profile in the Knudsen layer, for σ1 = 1.0 and

(a) σ2 = 1.0, (b) σ2 = 0.4 and (c) σ2 = 0.15. The velocity profiles are almost unaffected by

the value of n at high values of the accommodation coefficients (σ2 = 1.0) across the entire

annular clearance. However, decreasing σ2 to 0.4, the results are sensitive to the exponent

value, but only in the Knudsen layer at the outer cylinder. For small accommodation

coefficients (σ2 = 0.15), the velocity profiles are shown clearly to depend on the value of n

and the sensitivity increases towards the outer cylinder.

3.3 Critical accommodation coefficients

In this section, we identify critical accommodation coefficients that produce (i) normal, (ii)

fully-inverted, and (iii) partially-inverted velocity profiles. A normal (non-inverted) velocity

profile occurs when the tangential velocity decreases monotonically from the inner to the

outer cylinder. In contrast, a fully-inverted case occurs when the velocity monotonically

increases. Finally, a partially-inverted profile occurs when there is a decrease and increase

at multiple locations between the inner and outer cylinders.

The velocity profile is given in Eq. 34; the gradient of this can be used as a criterion to

judge whether the function is monotonically decreasing or increasing. After some simplifi-
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Figure 7: Variation of the non-dimensional velocity [U∗ = uϕ/(ω1R1)] as a function of the

radial distance for σ1 = 1.0 and various values of σ2, ranging from (a) 0.02 to 0.14 and (b)

0.16 to 0.30. Normal, fully-inverted and partially-inverted velocity profiles are seen in both

the PL model results and the DSMC data, for Kn = 0.5 and R2/R1 = 5/3.
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Figure 8: Effect of the power-law distribution function exponent, n, on the velocity profiles.
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cations, the velocity gradient for the case of a rotating inner cylinder and stationary outer

cylinder can be expressed as:

duϕ
dr

= ω1

[
1− 1

H + α1λ
R3

1
+ α2λ

R3
2

(
α1λ

R3
1

+G(r) +
1

r2β

)]
. (38)

If duϕ/dr > 0, a fully inverted velocity profile exists, and this is only satisfied when:(
α1λ
R3

1
+G(r) + 1

r2β

)
H + α1λ

R3
1
+ α2λ

R3
2

< 1, (39)

which can only hold throughout the annular clearance (R1 ≤ r ≤ R2), when [G(r) +

1/(r2β)] is at its maximum value, which occurs at r = R1. Using this condition, the

critical accommodation coefficient for a fully inverted velocity profile (i.e. positive velocity

gradient) can be expressed as:

(σ2)P = 2

[
1 +

R3
2

R2
1βλ

− R3
2

λ
H

]−1

. (40)

Equation 40 provides an upper bound, so for σ2 < (σ2)P a fully inverted velocity will

always occur, and this phenomenon is independent of the value of the accommodation

coefficient at the inner cylinder. In the absence of any Knudsen layer in the flow, i.e. a

constant mean free path between the inner and outer cylinders, Eq. 40 simply reduces to

the classical slip solution presented in Eq. 17 of Yuhong et al. (2005).

From Eq. 38, if duϕ/dr < 0, the velocity will be a decreasing function of r and no

inverted velocity profile will be observed. This situation can only exist when:(
α1λ
R3

1
+G(r) + 1

r2β

)
H + α1λ

R3
1
+ α2λ

R3
2

> 1, (41)

which can only hold throughout the annular clearance (R1 ≤ r ≤ R2) when G(r)+1/(r2β)

is at its minimum value, which occurs for r = rc (R1 < rc < R2). The value of rc can

be obtained numerically for a given Kn and R2/R1 and then the critical accommodation

coefficient for no velocity inversion (i.e. negative velocity gradient) follows as:

(σ2)N = 2

[
1 +

R3
2

R2
cβ(rc)λ

− R3
2

λ
(G(rc)−H)

]−1

(42)

Equation 42 provides a lower bound, so for σ2 > (σ2)N no inverted velocity profile will

occur and this phenomenon is also independent of the value of the accommodation coeffi-

cient at the inner cylinder, as in the case above. When there is no mean free path variation

between the inner and outer cylinders, Eq. 42 reduces to the corresponding classical slip

solution (see Eq. 19 of Yuhong et al. 2005).
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Considering these two cases given by Eqs. 40 and 42, it is evident that a partially-

inverted velocity profile will occur when the accommodation coefficient at the outer cylinder

lies within the range:

(σ2)P < σ2 < (σ2)N. (43)

This also does not depend on the accommodation coefficient of the inner cylinder.

Figure 9a presents the variation of the critical accommodation coefficient (σ2)N as a

function of Knudsen number. Our PL model results are compared with DSMC data (Ste-

fanov et al. 2006), the classical slip solution (Eq. 19 of Yuhong et al. 2005) and the lin-

earized BGK model (Aoki et al. 2003), in the flow regime 0 < Kn < 1. In the continuum

regime (Kn < 0.001), all three theoretical models converge to similar values. In the slip

flow regime (0.001 < Kn < 0.1), the PL model lies below the classical slip solution and

the BGK model. The PL model results show very good quantitative agreement with the

DSMC data in the early transition regime (0.1 < Kn < 0.5), whereas the other two models

show significant deviations. Although DSMC data are not available beyond Kn > 0.5,

by extrapolating the trend up to Kn = 0.5 the PL model may slightly overpredict (σ2)N
in the latter part of the transition regime. In the free-molecular regime, the PL model

asymptotically reaches a constant value (∼ 0.7) and both the classical slip solution and the

BGK model diverge (not shown in Fig. 9a).

Figure 9b shows the variation of the critical accommodation coefficient, (σ2)P, as a

function of Knudsen number. Our PL model is compared with the classical slip solution (see

Eq. 17 of Yuhong et al. 2005) from the slip to the free-molecular regime (0.001 < Kn < 10),

although the continuum assumptions are highly questionable for Kn > 1. The classical slip

solution significantly overpredicts the PL model in the transition regime and beyond. For

Kn >> 1, the slip solution indeed shows a diverging and unphysical behavior with (σ2)P
values greater than unity. Conversely, our PL model reaches a constant value of ∼ 0.3.

4 Conclusions

The non-equilibrium flow physics of rarefied gases interacting with non-planar surfaces

has been described using a power-law (PL) probability distribution function for the free-

paths of the gas molecules. We have developed new geometry-dependent mean free path

solutions for both convex and concave surfaces that take into account the termination

of the free paths of gas molecules at the curved surfaces. Subsequently, a hypothetical

constitutive scaling approach to model the Knudsen layer within a conventional continuum

fluid dynamics framework has been proposed, in accordance with the kinetic theory of

gases. This has been tested for the case of isothermal rarefied Couette flow between two

concentric rotating cylinders.
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Figure 9: Variation of critical accommodation coefficients with Knudsen number for the ge-

ometric configuration of R2/R1 = 5/3; (a) (σ2)N the lower bound for no velocity inversion,

i.e. negative velocity gradient throughout the annular clearance (R1 < r < R2); (b) (σ2)P
the upper bound for full velocity inversion, i.e. positive velocity gradient throughout the

annular clearance.
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The gas velocity profiles show good agreement with DSMC data in the transition regime

for various values of the accommodation coefficients of the inner and outer cylinder surfaces.

When the accommodation coefficients of the inner and outer cylinders have the same value,

the family of velocity profiles all pass through a common point. This intersection point for

our PL model is very close to the point predicted by the DSMC data, whereas the classical

slip solution predicts this point much closer to the outer cylinder. New analytical expres-

sions have been developed for the critical accommodation coefficients for non-inverted, fully

inverted and partially inverted velocity profiles. The PL model shows excellent agreement

with the available DSMC data.

Our new PL model is more accurate than conventional slip solutions in capturing some

of the non-linear effects associated with Knudsen layers in the slip and transition flow

regimes. With the current approach, we can also obtain the velocity profile at a fixed

Knudsen number by modifying the power-law exponent to provide accurate results in both

the Knudsen layer and the bulk flow. Conversely, conventional slip-modeling techniques

are only able to modify the velocity-slip at the surface by tuning the value of the slip

coefficient.

Our PL mean free path scaling can be readily extended to more complex geometries,

and straightforwardly incorporated into existing CFD codes, to solve for low-speed rarefied

gas flows in arbitrary geometries. While all our comparisons with DSMC data in the

current paper used the PL exponent n = 3, as in the previous planar test cases (Dongari

et al. 2011a; Dongari et al. 2011b), establishing properly and generally the value of n

requires further numerical experiments on rarefied gases confined in arbitrary geometries

and subjected to a range of complex flow conditions. Extension to non-isothermal flows

should also be the subject of future work.
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