10 research outputs found

    Temperature and Prey Species Richness Drive the Broad-Scale Distribution of a Generalist Predator

    No full text
    The ongoing climate change and the unprecedented rate of biodiversity loss render the need to accurately project future species distributional patterns more critical than ever. Mounting evidence suggests that not only abiotic factors, but also biotic interactions drive broad-scale distributional patterns. Here, we explored the effect of predator-prey interaction on the predator distribution, using as target species the widespread and generalist grass snake (Natrix natrix). We used ensemble Species Distribution Modeling (SDM) to build a model only with abiotic variables (abiotic model) and a biotic one including prey species richness. Then we projected the future grass snake distribution using a modest emission scenario assuming an unhindered and no dispersal scenario. The two models performed equally well, with temperature and prey species richness emerging as the top drivers of species distribution in the abiotic and biotic models, respectively. In the future, a severe range contraction is anticipated in the case of no dispersal, a likely possibility as reptiles are poor dispersers. If the species can disperse freely, an improbable scenario due to habitat loss and fragmentation, it will lose part of its contemporary distribution, but it will expand northwards

    untitled

    No full text
    The local-regional diversity relationship of woody plant species along an altitudinal gradient of Mt. Holomontas, Greece was studied. It was found that this relationship depends on scale, and more precisely on the difference in scale between what is considered local and what is considered regional scale of observation. When the local scale covers a large part of the region, then local diversity depends on regional diversity. When the difference in scale is large, then local diversity is independent of regional diversity. These findings highlight the limitations of the localregional diversity relationship for inferring community saturation due to species interaction

    Sea surface temperature variations in core foraging grounds drive nesting trends and phenology of loggerhead turtles in the Mediterranean Sea

    No full text
    The sea surface temperature (SST) in loggerhead turtle breeding areas affects the species reproductive biology. Less is known about the effects of changes in SST in the species foraging grounds. We used nesting data for the Mediterranean loggerhead turtle population breeding on the Greek island of Zakynthos to study the effect of SST in the population foraging grounds upon the initiation of nesting and the number of clutches laid. We found that the climatic conditions (SST) in the foraging grounds affected the population nesting phenology in the short term (i.e. within the same year); warmer years triggered an earlier onset of nesting. However, the effect of foraging grounds SST upon nesting is comparatively less important than the local conditions at the nesting ground. Although nesting phenology seems to depend on current's year foraging grounds SST the number of nests in our study rookery were negatively correlated with SSTs recorded 2 years prior nesting, with higher SST leading to fewer nests. From this point of view, climate change at the foraging grounds may influence the reproductive phenology of loggerheads. (C) 2009 Elsevier B.V. All rights reserve

    Agricultural decline and sustainable development on mountain areas in Greece: Sustainability assessment of future scenarios

    No full text
    Agricultural decline may pose an important threat to mountain biodiversity but it also constitutes a driving force of socio-economic transformation. The aim of this study is to investigate the implications of alternative agricultural policy scenarios on the sustainable development of Greek mountain areas using a case study approach (Zagori region, Greece). Two agricultural policy scenarios were explored and assessed against a list of sustainability objectives. Causal relationships among drivers of changes and sustainability objectives were explored using Network Analysis. Our analysis has shown that agricultural liberalisation is expected to have devastating effects on the development of the area and it was strongly opposed as an alternative future by the local stakeholders. The analysis of the driver's causal relationship has also revealed that in order to ensure the sustainable development of the area it is necessary to sustain low input extensive farming, to promote mild tourism development and to enhance the operational efficiency of the National Park. Moreover, in order to reconcile agricultural decline, biodiversity and sustainable development, policy-management recommendations must be drawn at multiple administrative levels and complementary policy interventions within and between levels are required. It is thus, important that EU agricultural policies are complemented by national-regional interventions in order to regulate the fragile balance between agriculture and tourism. Finally, this study has shown that the combination of scenario analysis and sustainability assessment can provide an efficient tool to inform management strategies for sustainable development

    Diversity Patterns of Different Life Forms of Plants along an Elevational Gradient in Crete, Greece

    No full text
    Elevational gradients provide a unique opportunity to explore species responses to changing environmental conditions. Here, we focus on an elevational gradient in Crete, a climate-vulnerable Mediterranean plant biodiversity hotspot and explore the diversity patterns and underlying mechanisms of different plant life forms. We found that the significant differences in life forms’ elevational and environmental ranges are reflected in α- diversity (species richness at local scale), γ-diversity (species richness at regional scale) and β-diversity (variation in species composition). The α- and γ-diversity decreased with elevation, while β-diversity followed a hump-shaped relationship, with the peak varying between life forms. However, β-deviation (deviation from null expectations) varied significantly with elevation but was life formindependent. This suggests that species composition is shaped by the size of the available species pool which depends on life form, but also by other deterministic or stochastic processes that act in a similar way for different life forms. The strength of these processes varies with elevation, with hotter–drier conditions and increased human activities filtering species composition at lowlands and large-scale processes determining the species pool size overriding local ecological processes at higher elevations

    How does habitat diversity affect the species-area relationship?

    No full text
    Aim To examine the way in which 'area' and 'habitat diversity' interact in shaping species richness and to find a simple and valid way to express this interaction. Location The Natura 2000 network of terrestrial protected areas in Greece, covering approximately 16% of the national territory. Methods We used the Natura 2000 framework, which provides a classification scheme for natural habitat types, to quantify habitat heterogeneity. We analysed data for the plant species composition in 16,143 quadrats in which 5044 species and subspecies of higher plants were recorded. We built a simple mathematical model that incorporates the effect of habitat diversity on the species-area relationship (SAR). Results Our analysis showed that habitat diversity was correlated with area. However, keeping habitat diversity constant, species richness was related to area; while keeping area constant, species richness was related to habitat diversity. Comparing the SAR of the 237 sites we found that the slope of the species-area curve was related to habitat diversity. Conclusions Discussion of the causes of the SAR has often focused on the primacy of area per se versus habitat heterogeneity, even though the two mechanisms are not mutually exclusive and should be considered jointly. We find that increasing habitat diversity affects the SAR in different ways, but the dominant effect is to increase the slope of the SAR. While a full model fit typically includes a variety of terms involving both area and habitat richness, we find that the effect of habitat diversity can be reduced to a linear perturbation of the slope of the species accumulation curve

    The Effect of Climate and Human Pressures on Functional Diversity and Species Richness Patterns of Amphibians, Reptiles and Mammals in Europe

    No full text
    The ongoing biodiversity crisis reinforces the urgent need to unravel diversity patterns and the underlying processes shaping them. Although taxonomic diversity has been extensively studied and is considered the common currency, simultaneously conserving other facets of diversity (e.g., functional diversity) is critical to ensure ecosystem functioning and the provision of ecosystem services. Here, we explored the effect of key climatic factors (temperature, precipitation, temperature seasonality, and precipitation seasonality) and factors reflecting human pressures (agricultural land, urban land, land-cover diversity, and human population density) on the functional diversity (functional richness and Rao’s quadratic entropy) and species richness of amphibians (68 species), reptiles (107 species), and mammals (176 species) in Europe. We explored the relationship between different predictors and diversity metrics using generalized additive mixed model analysis, to capture non-linear relationships and to account for spatial autocorrelation. We found that at this broad continental spatial scale, climatic variables exerted a significant effect on the functional diversity and species richness of all taxa. On the other hand, variables reflecting human pressures contributed significantly in the models even though their explanatory power was lower compared to climatic variables. In most cases, functional richness and Rao’s quadratic entropy responded similarly to climate and human pressures. In conclusion, climate is the most influential factor in shaping both the functional diversity and species richness patterns of amphibians, reptiles, and mammals in Europe. However, incorporating factors reflecting human pressures complementary to climate could be conducive to us understanding the drivers of functional diversity and richness patterns

    Investigando relaciones planta - polinizador en el Egeo: los enfoques del proyecto POL-AEGIS (Los polinizadores del archipiélago Egeo: diversidad y amenazas)

    Get PDF
    Worldwide, there is a well-documented crisis for bees and other pollinators which represent a fundamental biotic capital for wild life conservation, ecosystem function, and crop production. Among all pollinators of the world, bees (Hymenoptera: Apoidea) constitute the major group in species number and importance, followed by hover flies (Diptera: Syrphidae). The Aegean constitutes one of the world’s hotspots for wild bee and other pollinator diversity including flies (mainly hover flies and bee flies), beetles, and butterflies. Despite this advantage, our present knowledge on Greek pollinators is poor, due to a lack of focused and systematic research, absence of relevant taxonomic keys, and a general lack of taxonomic experts in the country. As a result, assessments of pollinator loss cannot be carried out and the causes for the potential pollinator loss in the country remain unknown. Consequently, the desperately needed National Red Data list for pollinators cannot be compiled. This new research (2012–2015) aims to contribute to the knowledge of the pollinator diversity in Greece, the threats pollinators face, as well as the impacts these threats may have on pollination services. The research is conducted in the Aegean archipelago on >20 islands and several mainland sites in Greece and Turkey. Prime goals are: i. the assessment of bee and hover fly diversity (species, genetic); ii. their pollination services; and iii. the effects of climate change, grazing, intensive bee-keeping, fires, electromagnetic radiation on bee diversity and ecology, as well as on plant–pollinator networks. At the same time, this research contributes to the taxonomic capital in Greece and the Eastern Mediterranean, focusing on the creation of the first identification keys for pollinators, the training of new scientists, as well as the enrichment and further development of the Melissotheque of the Aegean, a permanent reference collection of insect pollinators established at the University of the Aegean.En todo el mundo hay una crisis bien documentada para las abejas y otros polinizadores los cuales representan un capital biótico fundamental para la conservación de la vida silvestre, la función de los ecosistemas, y la producción de cultivos. Entre todos los polinizadores del mundo, las abejas (Hymenoptera: Apoidea) constituyen el grupo principal en cuanto al número de especies y su importancia, seguido por los sírfidos (Diptera: Syrphidae). El Egeo constituye uno de los puntos importantes de diversidad de abejas silvestres y otros polinizadores del mundo, incluyendo moscas (principalmente sírfidos y bombílidos), escarabajos y mariposas. A pesar de esta ventaja, los conocimientos actuales sobre los polinizadores griegos son reducidos, debido a la falta de una investigación focalizada y sistemática, la ausencia de claves taxonómicas pertinentes, y una falta general de expertos en taxonomía en el país. Como resultado, no se pueden llevar a cabo evaluaciones de la pérdida de polinizadores y las causas de la pérdida potencial de polinizadores en el país siguen siendo desconocidas. En consecuencia, la imperiosamente necesitaba Lista Roja de datos para polinizadores no se puede compilar. Esta nueva investigación (2012-2015) tiene como objetivo contribuir al conocimiento de la diversidad de polinizadores en Grecia, enfrentarse a las amenazas para los polinizadores, así como investigar el impacto que estas amenazas pueden tener sobre los servicios de polinización. La investigación se llevará a cabo en el archipiélago del mar Egeo en más de 20 islas y en varios sitios del continente en Grecia y Turquía. Los principales objetivos son: i. la evaluación de la diversidad de abejas y sírfidos (especies, genética); ii. sus servicios de polinización, y iii. los efectos del cambio climático, el pastoreo, la apicultura intensiva, los incendios y las radiaciones electromagnéticas sobre la diversidad de abejas y la ecología, así como en las redes planta-polinizador. Al mismo tiempo, esta investigación contribuirá a la taxonomía en Grecia y el Mediterráneo Oriental, centrándose en primer lugar en la creación de las claves de identificación para polinizadores, la formación de nuevos científicos, así como el enriquecimiento y el desarrollo de la Melisoteca del Egeo, una colección de referencia permanente de los insectos polinizadores establecidos en la Universidad del Egeo.This research is co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales -Investing in knowledge society through the European Social Fund
    corecore