91 research outputs found

    Development and cross-validation of prediction equations for estimating resting energy expenditure in severely obese Caucasian children and adolescents

    Get PDF
    The objectives of the present study were to develop and cross-validate new equations for predicting resting energy expenditure (REE) in severely obese children and adolescents, and to determine the accuracy of new equations using the Bland–Altman method. The subjects of the study were 574 obese Caucasian children and adolescents (mean BMI z-score 3·3). REE was determined by indirect calorimetry and body composition by bioelectrical impedance analysis. Equations were derived by stepwise multiple regression analysis using a calibration cohort of 287 subjects and the equations were cross-validated in the remaining 287 subjects. Two new specific equations based on anthropometric parameters were generated as follows: (1) REE=(Sex×892·68)−(Age×115·93)+(Weight×54·96)+(Stature×1816·23)+1484·50 (R2 0·66; se 1028·97 kJ); (2) REE=(Sex×909·12)−(Age×107·48)+(fat-free mass×68·39)+(fat mass×55·19)+3631·23 (R2 0·66; se 1034·28 kJ). In the cross-validation group, mean predicted REE values were not significantly different from the mean measured REE for all children and adolescents, as well as for boys and for girls (difference <2 %) and the limits of agreement (±2 sd) were +2·06 and −1·77 MJ/d (NS). The new prediction equations allow an accurate estimation of REE in groups of severely obese children and adolescents. These equations might be useful for health care professionals and researchers when estimating REE in severely obese children and adolescents

    Effects of a 3-Week Inpatient Multidisciplinary Body Weight Reduction Program on Body Composition and Physical Capabilities in Adolescents and Adults With Obesity

    Get PDF
    BackgroundThe aim of the present study was to examine the short-term changes in body composition and physical capabilities in subjects with obesity during a multidisciplinary inpatient body weight reduction program (BWRP). MethodsOne hundred thirty-nine adolescents (56 boys and 83 girls; BMI: 37.1 +/- 6.5 kg/m(2); Fat Mass, FM: 45.3 +/- 7.2%) and 71 adults (27 males and 44 females; BMI: 44 +/- 4.7 kg/m(2); FM: 51.4 +/- 4.7%) followed a 3-week inpatient BWRP consisting of regular physical activity, moderate energy restriction, nutritional education and psychological counseling. Before (T0) and after the end of the BWRP (T21), body composition was assessed with an impedancemeter, lower limb muscle power with Margaria Stair Climbing Test (SCT), lower limb functionality with Short Physical Performance Battery (SPPB), and the capacity of performing activity of daily living (ADL) with Physical Performance Test (PPT). ResultsAt T21, obese adolescents showed a 4% reduction in body mass (BM) (p < 0.001), associated with a FM reduction in boys (-10%) and girls (-6%) (p < 0.001) and with a 3% reduction in fat-free mass (FFM) recorded only in boys (p = 0.013). Obese adults showed a 5% BM reduction (p < 0.001), associated with a 2% FFM and 9% FM reduction (p < 0.001) in males, and 7% FM reduction in females (p < 0.001). Regarding physical capabilities, at T21 in obese adolescents, PPT score increased by 4% (p < 0.001), SCT decreased by -5% (boys) and -7% (girls) (p < 0.001), while SPPB score did not change significantly. In obese adults at T21, PPT score increased by 9% (p < 0.001), SCT decreased by -16% (p < 0.001) only in females, and SPPB score increased by 7% (males) and 10% (females) (p < 0.01). ConclusionIn conclusion, moderate energy restriction and regular physical activity determine a 4-5% BM reduction during a 3-week inpatient BWRP, improve physical capabilities and induce beneficial changes in body composition in adolescents and adults with obesity

    benefits of aerobic exercise training with recommendations for healthy aging

    Get PDF
    The purpose of this article is to provide an overview on the importance of aerobic exercise and its characteristics for healthy aging. The first section briefly reviews the effects of aging on maximal aerobic power; Section 2 considers the effects of aerobic exercise training, and Section 3 summarizes the recommendations and some limitations of the current guidelines for aerobic exercise training. Physical activity cannot stop the biological aging processes; however, there is evidence that regular aerobic exercise can minimize the physiological effects of an otherwise sedentary lifestyle and increase active life expectancy by limiting the development and progression of chronic disease and disability conditions. The use of moderately standardized guidelines for exercise prescription resulted in safe and effective impact on health-related outcomes

    Glucose pulse. A simple method to estimate the amount of glucose oxidized during exercise in type 1 diabetic patients

    Get PDF
    In type 1 diabetic patients, exercise contributes to enhance insulin sensitivity and may help, together with diet and insulin therapy, to achieve and maintain better metabolic control. Fat and carbohydrates are the main substrates for energy production in skeletal muscle during aerobic exercise in well-fed humans, with their relative contribution to total energy production being a function of exercise intensity. Below the anaerobic threshold, both oxygen consumption and heart rate during exercise increase linearly as a function of exercise intensity. On the basis of these relationships, the aim of the present study was to verify the possibility of using heart rate to estimate the amount of glucose oxidized during exercise in type 1 diabetic patients as well as in a control group of healthy subjects. This study shows that heart rate can be a useful physiological parameter to be used to estimate the amount of glucose oxidized during exercise

    Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training

    Get PDF
    Oxidative function during exercise was evaluated in 11 young athletes with marked skeletal muscle hypertrophy induced by long-term resistance training (RTA, body mass 102.67.3 kg, meanSD) and 11 controls (CTRL, body mass 77.86.0). Pulmonary O2 uptake (V\u27O2) and vastus lateralis muscle fractional O2 extraction (by near-infrared spectroscopy) were determined during an incremental cycle ergometer (CE) and one-leg knee-extension (KE) exercise. Mitochondrial respiration was evaluated ex vivo by high-resolution respirometry in permeabilized vastus lateralis fibers obtained by biopsy. Quadriceps femoris muscle cross sectional area, volume (determined by magnetic resonance imaging) and strength were greater in RTA vs. CTRL (by ~40%, ~33% and ~20%, respectively). V\u27O2peak during CE was higher in RTA vs. CTRL (4.050.64 L min-1 vs. 3.560.30)no difference between groups was observed during KE. The O2 cost of CE exercise was not different between groups. When divided per muscle mass (for CE) or quadriceps muscle mass (for KE) V\u27O2peak was lower (by 15-20%) in RTA vs. CTRL. Vastus lateralis fractional O2 extraction was lower in RTA vs. CTRL at all work rates, both during CE and KE. RTA had higher ADP-stimulated mitochondrial respiration (56.723.7 pmolO2s-1mg-1 ww) vs. CTRL (35.710.2), and a tighter coupling of oxidative phosphorylation. In RTA the greater muscle mass and maximal force, and the enhanced mitochondrial respiration seem to compensate for the hypertrophy-induced impaired peripheral O2 diffusion. The net results are an enhanced whole body oxidative function at peak exercise, and unchanged efficiency and O2 cost at submaximal exercise, despite a much greater body mas

    Analysis of sarcopenic obesity prevalence and diagnostic agreement according to the 2022 ESPEN and EASO Consensus in hospitalized older adults with severe obesity

    Get PDF
    BackgroundSarcopenic obesity (SO) is a clinical disorder characterized by increased adiposity and decreased muscle mass and function, commonly observed in older adults. However, most of the studies that investigated SO prevalence rates were not based on current standardized diagnostic methods. Thus, this study aims to estimate the prevalence rates of SO and their level of agreement using different instruments proposed by the European Society for Clinical Nutrition and Metabolism (ESPEN) and the European Association for the Study of Obesity (EASO) Consensus, in a sample of hospitalized older adults with severe obesity.MethodsA cross-sectional study with 90 older adults (≥ 60 years) with severe obesity (body mass index ≥ 35 kg/m/²) seeking an in-hospital multidisciplinary body weight reduction program. Skeletal muscle function was assessed using the five-repetition Sit-Stand test (5-SSt) and Handgrip Strength (HGS). Body composition was evaluated by high percentages of fat mass (FM), low appendicular lean mass (ALM/W), and skeletal muscle mass (SMM/W), adjusted to body weight. The stage of SO was assessed on the presence of at least one comorbidity and specific cut-offs were adopted for each step. All analyses were performed according to gender and age range.ResultsThe prevalence rates of SO in the total sample were 23.3%, 25.5%, 31.1%, and 40.0% considering altered values of 5-SSt+FM+ALM/W, HGS+FM+ALM/W, 5-SSt+FMSSM/W, and HGS+FM+SSM/W, respectively. Higher prevalence rates were observed among female and old elderly subgroups, regardless of the diagnostic combination. There were weak agreements between the muscle function tests (5-SSt versus HGS) using both muscle mass indexes in the total sample and all subgroups. Moderate agreements were observed between muscle mass indexes (SMM/W versus ALM/W) in the total sample, male and younger older adults (using 5-SSt), and strong agreements for men and younger older adults (using HGS).ConclusionThe discrepancies observed between the prevalence rates and their levels of agreement reinforce the need for new studies in similar populations aiming for better standardization of SO assessment

    Tensiomyography detects early hallmarks of bed-rest-induced atrophy before changes in muscle architecture.

    Get PDF
    In young and older people skeletal muscle mass is reduced after as little as seven days of disuse. The declines in muscle mass after such short periods are of high clinical relevance, particularly in older people who show higher atrophy rate, and a slower, or even a complete lack of muscle mass recovery after disuse. Ten men (24.3± 2.6 years) underwent 35 days of 6° head-down tilt bed rest followed by 30 days of recovery. During bed rest, a neutral energy balance was maintained, with three weekly passive physiotherapy sessions to minimise muscle soreness and joint stiffness. All measurements were performed in a hospital at days 1-10 (BR1-BR10), day 16 (BR16), 28 (BR28) and 35 (BR35) of bed rest, and day 1 (R+1), 3 (R+3) and 30 (R+30) after reambulation. Vastus medialis obliquus (VMO), vastus medialis longus (VML) and biceps femoris (BF) thickness (d) and pennation angle (Θ) were assessed by ultrasonography, while twitch muscle belly displacement (Dm) and contraction time (Tc) were assessed with tensiomyography. After bed rest, d and Θ decreased by 13-17% in all muscles (P<.001) and had recovered at R+30. Dm was increased by 42.3-84.4% (P<.001) at BR35 and preceded the decrease in d by 7, 5 and 3 days in VMO, VML and BF, respectively. Tc increased only in BF (32.1%; P<.001) and was not recovered at R+30. Tensiomyography can detect early bed-rest-induced changes in muscle with higher sensitivity before overt architectural changes and atrophy can be detected
    corecore