545 research outputs found

    Formation of Galaxy Clusters

    Full text link
    In this review, we describe our current understanding of cluster formation: from the general picture of collapse from initial density fluctuations in an expanding Universe to detailed simulations of cluster formation including the effects of galaxy formation. We outline both the areas in which highly accurate predictions of theoretical models can be obtained and areas where predictions are uncertain due to uncertain physics of galaxy formation and feedback. The former includes the description of the structural properties of the dark matter halos hosting cluster, their mass function and clustering properties. Their study provides a foundation for cosmological applications of clusters and for testing the fundamental assumptions of the standard model of structure formation. The latter includes the description of the total gas and stellar fractions, the thermodynamical and non-thermal processes in the intracluster plasma. Their study serves as a testing ground for galaxy formation models and plasma physics. In this context, we identify a suitable radial range where the observed thermal properties of the intra-cluster plasma exhibit the most regular behavior and thus can be used to define robust observational proxies for the total cluster mass. We put particular emphasis on examining assumptions and limitations of the widely used self-similar model of clusters. Finally, we discuss the formation of clusters in non-standard cosmological models, such as non-Gaussian models for the initial density field and models with modified gravity, along with prospects for testing these alternative scenarios with large cluster surveys in the near future.Comment: 66 pages, 17 figures, review to be published in 2012 Annual Reviews of Astronomy & Astrophysic

    Complex Derivatives

    Get PDF
    The intrinsic complexity of the financial derivatives market has emerged as both an incentive to engage in it, and a key source of its inherent instability. Regulators now faced with the challenge of taming this beast may find inspiration in the budding science of complex systems. When financial derivatives were cast in 2002 as latent 'weapons of mass destruction', one might have expected the world at large to sit up and listen — particularly in the wake of subsequent events that led to the financial crisis of 2008. Instead, the derivatives market continues to grow in size and complexity (Fig. 1), spawning a new generation of financial innovations, and raising concerns about its potential impact on the economy as a whole. A derivative instrument is a financial contract between two parties, in which the value of the payoff is derived from the value of another financial instrument or asset, called the underlying entity. In some cases, this contract acts as a kind of insurance: in a credit default swap, for example, a lender might buy protection from a third party to insure against the default of the borrower. However, unlike conventional insurance, in which a person necessarily owns the house she wants to insure, derivatives can be negotiated on any underlying entity — meaning anyone could take out insurance on the house in question. Speculation therefore emerges as another reason to trade in derivatives. By engaging in a speculative derivatives market, players can potentially amplify their gains, which is arguably the most plausible explanation for the proliferation of derivatives in recent years. Needless to say, losses are also amplified. Unlike bets on, say, dice — where the chances of the outcome are not affected by the bet itself — the more market players bet on the default of a country, the more likely the default becomes. Eventually the game becomes a self-fulfilling prophecy, as in a bank run, where if each party believes that others will withdraw their money from the bank, it pays each to do so. More perversely, in some cases parties have incentives (and opportunities) to precipitate these events, by spreading rumours or by manipulating the prices on which the derivatives are contingent — a situation seen most recently in the London Interbank Offered Rate (LIBOR) affair. Proponents of derivatives have long argued that these instruments help to stabilize markets by distributing risk, but it has been shown recently that in many situations risk sharing can also lead to instabilities

    The asialoglycoprotein receptor in human hepatocellular carcinomas: its expression on proliferating cells

    Get PDF
    The expression of the asialoglycoprotein receptor (ASGP-R) on human hepatocellular carcinoma (HCC) cells might be exploited to reduce the extrahepatic toxicity of DNA synthesis inhibitors by their conjugation with galactosyl-terminating peptides. In the present study we first assessed the frequency of ASGP-R expression in 60 HCCs. Secondly, we investigated whether the receptor was maintained on the plasma membranes of DNA synthesizing cancer cells. Needle biopsies of HCC were evaluated. Diagnosis and grading of HCC were performed on routine haematoxylin and eosin-stained sections according to Edmondson and Steiner (1953). Thirty-five tumours were grade I and II and were classified as well differentiated, while 25 tumours were grade III and IV and were classified as poorly differentiated. Sections from formalin-fixed, paraffin-embedded samples were incubated, after antigen retrieval, with an anti-ASGP-R monoclonal antibody revealed by secondary biotinylated antibody and streptavidin–biotin–peroxidase–diaminobenzidine reaction. A clear immunolabelling of plasma membranes of HCC cells was observed in 28 out of 35 (80%) well differentiated (grade I and II) and in five out of 25 (20%) poorly differentiated (grade III and IV) HCCs. The presence of the ASGP-R on the surface of DNA synthesizing cancer cells was also investigated after in vitro bromodeoxyuridine (BrdU) labelling of HCC samples by immunohistochemical visualization of both the ASGP-R and incorporated BrdU on the same section. The results obtained clearly demonstrated that DNA synthesizing cancer cells expressed the ASGP-R on their surface. The presence of ASGP-R on cell plasma membrane in the majority of differentiated HCCs and its maintenance on proliferating cells encourages studies in order to restrict the action of the inhibitors of DNA synthesis of HCC cells by their conjugation with galactosyl-terminating carriers internalized through this receptor. © 1999 Cancer Research Campaig

    The Effects of Granulocyte Colony-Stimulating Factor in Patients with a Large Anterior Wall Acute Myocardial Infarction to Prevent Left Ventricular Remodeling. A 10-Year Follow-Up of the RIGENERA Study

    Get PDF
    Background: the RIGENERA trial assessed the efficacy of granulocyte-colony stimulating factor (G-CSF) in the improvement of clinical outcomes in patients with severe acute myocardial infarction. However, there is no evidence available regarding the long-term safety and efficacy of this treatment. Methods: in order to evaluate the long-term effects on the incidence of major adverse events, on the symptom burden, on the quality of life and the mean life expectancy and on the left ventricular (LV) function, we performed a clinical and echocardiographic evaluation together with an assessment using the Minnesota Living with Heart Failure Questionnaire (MLHFQ) and the Seattle Heart Failure Model (SHFM) at 10-years follow-up, in the patients cohorts enrolled in the RIGENERA trial. Results: thirty-two patients were eligible for the prospective clinical and echocardiography analyses. A significant reduction in adverse LV remodeling was observed in G-CSF group compared to controls, 9% vs. 48% (p = 0.030). The New York Heart Association (NYHA) functional class was lower in G-CSF group vs. controls (p = 0.040), with lower burden of symptoms and higher quality of life (p = 0.049). The mean life expectancy was significantly higher in G-CSF group compared to controls (15 +/- 4 years vs. 12 +/- 4 years, p = 0.046. No difference was found in the incidence of major adverse events. Conclusions: this longest available follow-up on G-CSF treatment in patients with severe acute myocardial infarction (AMI) showed that this treatment was safe and associated with a reduction of adverse LV remodeling and higher quality of life, in comparison with standard-of-care treatment

    The three-dimensional easy morphological (3-DEMO) classification of scoliosis – Part III, correlation with clinical classification and parameters

    Get PDF
    BACKGROUND: In the first part of this study we proposed a new classification approach for spinal deformities (3-DEMO classification). To be valid, a classification needs to describe adequately the phenomenon considered (construct validity): a way to verify this issue is comparison with already existing classifications (concurrent and criterion validity). AIM: To compare the 3-DEMO classification and the numerical results of its classificatory parameters with the existing clinical classifications and the Cobb degrees on the frontal and sagittal planes respectively. METHODS: 118 subjects (96 females) with adolescent idiopathic scoliosis (age 15.9 ± 3.1, 37.4 ± 12.5° Cobb) have been classified according to 3-DEMO, SRS-Ponseti, King and Lenke classifications as well as according to sagittal configuration. For all patients we computed the values of the 3-DEMO parameters and the classical Cobb degrees measurements in the frontal and sagittal planes. Statistical analysis comprised Chi Square and Regression analysis, including a multivariate stepwise regression. RESULTS: Three of the four 3-DEMO parameters (Direction, Sagittal and Frontal Shift) correlated with SRS-Ponseti, King and sagittal configuration classifications, but not with Lenke's one. Feeble correlations have been found among numerical parameters, while the stepwise regression allowed us to develop almost satisfactory models to obtain 3-DEMO parameters from classical Cobb degrees measurements. DISCUSSION: These results support the hypothesis of a possible clinical significance of the 3-DEMO classification, even if follow-up studies are needed to better understand these possible correlations and ultimately the classification usefulness. The most interesting 3D parameters appear to be Direction and mainly Phase, the latter being not at all correlated with currently existing classifications. Nevertheless, Shift cannot be easily appreciated on classical frontal and sagittal radiographs, even if it could presumably be calculated

    Type Ia Supernovae as Stellar Endpoints and Cosmological Tools

    Full text link
    Empirically, Type Ia supernovae are the most useful, precise, and mature tools for determining astronomical distances. Acting as calibrated candles they revealed the presence of dark energy and are being used to measure its properties. However, the nature of the SN Ia explosion, and the progenitors involved, have remained elusive, even after seven decades of research. But now new large surveys are bringing about a paradigm shift --- we can finally compare samples of hundreds of supernovae to isolate critical variables. As a result of this, and advances in modeling, breakthroughs in understanding all aspects of SNe Ia are finally starting to happen.Comment: Invited review for Nature Communications. Final published version. Shortened, update

    A Comprehensive Analysis of Electric Dipole Moment Constraints on CP-violating Phases in the MSSM

    Get PDF
    We analyze the constraints placed on individual, flavor diagonal CP-violating phases in the minimal supersymmetric extension of the Standard Model (MSSM) by current experimental bounds on the electric dipole moments (EDMs) of the neutron, Thallium, and Mercury atoms. We identify the four CP-violating phases that are individually highly constrained by current EDM bounds, and we explore how these phases and correlations among them are constrained by current EDM limits. We also analyze the prospective implications of the next generation of EDM experiments. We point out that all other CP-violating phases in the MSSM are not nearly as tightly constrained by limits on the size of EDMs. We emphasize that a rich set of phenomenological consequences is potentially associated with these generically large EDM-allowed phases, ranging from B physics, electroweak baryogenesis, and signals of CP-violation at the CERN Large Hadron Collider and at future linear colliders. Our numerical study takes into account the complete set of contributions from one- and two-loop EDMs of the electron and quarks, one- and two-loop Chromo-EDMs of quarks, the Weinberg 3-gluon operator, and dominant 4-fermion CP-odd operator contributions, including contributions which are both included and not included yet in the CPsuperH2.0 package. We also introduce an open-source numerical package, 2LEDM, which provides the complete set of two-loop electroweak diagrams contributing to the electric dipole moments of leptons and quarks.Comment: 23 pages, 11 figures; v2: references added, minor change

    Strong Ultraviolet Pulse From a Newborn Type Ia Supernova

    Full text link
    Type Ia supernovae are destructive explosions of carbon oxygen white dwarfs. Although they are used empirically to measure cosmological distances, the nature of their progenitors remains mysterious, One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion. Here we report observations of strong but declining ultraviolet emission from a Type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star, and therefore provides evidence that some Type Ia supernovae arise from the single degenerate channel.Comment: Accepted for publication on the 21 May 2015 issue of Natur
    corecore