16,814 research outputs found

    Constrained LQR for Low-Precision Data Representation

    Get PDF
    Performing computations with a low-bit number representation results in a faster implementation that uses less silicon, and hence allows an algorithm to be implemented in smaller and cheaper processors without loss of performance. We propose a novel formulation to efficiently exploit the low (or non-standard) precision number representation of some computer architectures when computing the solution to constrained LQR problems, such as those that arise in predictive control. The main idea is to include suitably-defined decision variables in the quadratic program, in addition to the states and the inputs, to allow for smaller roundoff errors in the solver. This enables one to trade off the number of bits used for data representation against speed and/or hardware resources, so that smaller numerical errors can be achieved for the same number of bits (same silicon area). Because of data dependencies, the algorithm complexity, in terms of computation time and hardware resources, does not necessarily increase despite the larger number of decision variables. Examples show that a 10-fold reduction in hardware resources is possible compared to using double precision floating point, without loss of closed-loop performance

    Minimal qudit code for a qubit in the phase-damping channel

    Full text link
    Using the stabilizer formalism we construct the minimal code into a D-dimensional Hilbert space (qudit) to protect a qubit against phase damping. The effectiveness of this code is then studied by means of input-output fidelity.Comment: 9 pages, 3 figures. REVTe

    Selective cloning of Gaussian states by linear optics

    Full text link
    We investigate the performances of a selective cloning machine based on linear optical elements and Gaussian measurements, which allows to clone at will one of the two incoming input states. This machine is a complete generalization of a 1 to 2 cloning scheme demonstrated by U. L. Andersen et al. [Phys. Rev. Lett. vol. 94, 240503 (2005)]. The input-output fidelity is studied for generic Gaussian input state and the effect of non-unit quantum efficiency is also taken into account. We show that if the states to be cloned are squeezed states with known squeezing parameter, then the fidelity can be enhanced using a third suitable squeezed state during the final stage of the cloning process. A binary communication protocol based on the selective cloning machne is also discussed.Comment: 6 pages, 6 figure

    Secure Deterministic Communication Without Entanglement

    Full text link
    We propose a protocol for deterministic communication that does not make use of entanglement. It exploits nonorthogonal states in a two-way quantum channel attaining significant improvement of security and efficiency over already known cryptographic protocols. The presented scheme, being deterministic, can be devoted to direct communication as well as to key distribution, and its experimental realization is feasible with present day technology.Comment: 4 pages, 2 figures. Corrected typos in the field "Authors"; added one referenc

    Energy-aware MPC co-design for DC-DC converters

    Get PDF
    In this paper, we propose an integrated controller design methodology for the implementation of an energy-aware explicit model predictive control (MPC) algorithms, illustrat- ing the method on a DC-DC converter model. The power consumption of control algorithms is becoming increasingly important for low-power embedded systems, especially where complex digital control techniques, like MPC, are used. For DC-DC converters, digital control provides better regulation, but also higher energy consumption compared to standard analog methods. To overcome the limitation in energy efficiency, instead of addressing the problem by implementing sub-optimal MPC schemes, the closed-loop performance and the control algorithm power consumption are minimized in a joint cost function, allowing us to keep the controller power efficiency closer to an analog approach while maintaining closed-loop op- timality. A case study for an implementation in reconfigurable hardware shows how a designer can optimally trade closed-loop performance with hardware implementation performance

    Robust explicit MPC design under finite precision arithmetic

    Get PDF
    We propose a design methodology for explicit Model Predictive Control (MPC) that guarantees hard constraint satisfaction in the presence of finite precision arithmetic errors. The implementation of complex digital control techniques, like MPC, is becoming increasingly adopted in embedded systems, where reduced precision computation techniques are embraced to achieve fast execution and low power consumption. However, in a low precision implementation, constraint satisfaction is not guaranteed if infinite precision is assumed during the algorithm design. To enforce constraint satisfaction under numerical errors, we use forward error analysis to compute an error bound on the output of the embedded controller. We treat this error as a state disturbance and use this to inform the design of a constraint-tightening robust controller. Benchmarks with a classical control problem, namely an inverted pendulum, show how it is possible to guarantee, by design, constraint satisfaction for embedded systems featuring low precision, fixed-point computations

    Graphene tests of Klein phenomena

    Full text link
    Graphene is characterized by chiral electronic excitations. As such it provides a perfect testing ground for the production of Klein pairs (electron/holes). If confirmed, the standard results for barrier phenomena must be reconsidered with, as a byproduct, the accumulation within the barrier of holes.Comment: 8 page

    Quantum Cryptography Approaching the Classical Limit

    Get PDF
    We consider the security of continuous-variable quantum cryptography as we approach the classical-limit, i.e., when the unknown preparation noise at the sender's station becomes significantly noisy or thermal (even by as much as 10,000 times the variance of the vacuum mode). We show that, provided the channel transmission losses do not exceed 50%, the security of quantum cryptography is not dependent on the channel transmission, and is therefore, incredibly robust against significant amounts of excess preparation noise. We extend these results to consider for the first time quantum cryptography at wavelengths considerably longer than optical and find that regions of security still exist all the way down to the microwave.Comment: Letter (4 pages) followed by appendix (4 pages). Updated from published version with some minor correction
    corecore