8 research outputs found

    Hypothesis-generating analysis of the impact of non-damaging metabolic acidosis on the transcriptome of different cell types: Integrated stress response (ISR) modulation as general transcriptomic reaction to non-respiratory acidic stress?

    No full text
    Extracellular pH is an important parameter influencing cell function and fate. Microenvironmental acidosis accompanies different pathological situations, including inflammation, hypoxia and ischemia. Research focussed mainly on acidification of the tumour micromilieu and the possible consequences on proliferation, migration and drug resistance. Much less is known regarding the impact of microenvironmental acidosis on the transcriptome of non-tumour cells, which are exposed to local acidosis during inflammation, hypoxia, ischemia or metabolic derailment. In the present hypothesis-generating study, we investigated the transcriptional impact of extracellular acidosis on five non-tumour cell types of human and rat origin, combining RNA-Sequencing and extensive bioinformatics analyses. For this purpose, cell type-dependent acidosis resiliences and acidosis-induced transcriptional changes within these resilience ranges were determined, using 56 biological samples. The RNA-Sequencing results were used for dual differential-expression analysis (DESeq and edgeR) and, after appropriate homology mapping, Gene Ontology enrichment analysis (g:Profiler), Ingenuity Pathway Analysis (IPA®), as well as functional enrichment analysis for predicted upstream regulators, were performed. Extracellular acidosis led to substantial, yet different, quantitative transcriptional alterations in all five cell types. Our results identify the regulator of the transcriptional activity NCOA5 as the only general acidosis-responsive gene. Although we observed a species- and cell type-dominated response regarding gene expression regulation, Gene Ontology enrichment analysis and upstream regulator analysis predicted a general acidosis response pattern. Indeed, they suggested the regulation of four general acidosis-responsive cellular networks, which comprised the integrated stress response (ISR), TGF-β signalling, NFE2L2 and TP53. Future studies will have to extend the results of our bioinformatics analyses to cell biological and cell physiological validation experiments, in order to test the refined working hypothesis here

    Nuclear Shuttling Precedes Dimerization in Mineralocorticoid Receptor Signaling

    Get PDF
    SummaryThe mineralocorticoid receptor (MR), a member of the steroid receptor superfamily, regulates water-electrolyte balance and mediates pathophysiological effects in the renocardiovascular system. Previously, it was assumed that after binding aldosterone, the MR dissociates from HSP90, forms homodimers, and then translocates into the nucleus where it acts as a transcription factor (Guiochon-Mantel et al., 1989; Robertson et al., 1993; Savory et al., 2001). We found that, during aldosterone-induced nuclear translocation, MR is bound to HSP90 both in the cytosol and the nucleus. Homodimerization measured by eBRET and FRET takes place when the MR is already predominantly nuclear. In vitro binding of MR to DNA was independent of ligand but could be partially inhibited by geldanamycin. Overall, here we provide insights into classical MR signaling necessary for elucidating the mechanisms of pathophysiological MR effects and MR specificity
    corecore