261 research outputs found

    Size and properties of the narrow-line region in Seyfert-2 galaxies from spatially-resolved optical spectroscopy

    Get PDF
    While [OIII] narrow-band imaging is commonly used to measure the size of the narrow-line regions (NLRs) in active galactic nuclei (AGNs), it can be contaminated by emission from surrounding starbursts. Recently, we have shown that long-slit spectroscopy provides a valuable alternative approach to probe the size in terms of AGN photoionisation. Moreover, several parameters of the NLR can be directly accessed. We here apply the same methods developed and described for the Seyfert-2 galaxy NGC1386 to study the NLR of five other Seyfert-2 galaxies by using high-sensitivity spatially-resolved optical spectroscopy obtained at the VLT and the NTT. We probe the AGN-photoionisation of the NLR and thus, its ``real'' size using diagnostic line-ratio diagrams.We derive physical properties of the NLR such as reddening, ionisation parameter, electron density, and velocity as a function of distance from the nucleus. For NGC5643, the diagnostic diagrams unveil a similar transition between line ratios falling in the AGN regime and those typical for HII regions as found for NGC1386, thus determining the size of the NLR. For the other four objects, all measured line ratios fall in the AGN regime. In almost all cases, both electron density and ionisation parameter decrease with radius. Deviations from this general behaviour (such as a secondary peak) seen in both the ionisation parameter and electron density can be interpreted as signs of shocks from the interaction of a radio jet and the NLR gas. In several objects, the gaseous velocity distribution is characteristic for rotational motion in an (inclined) emission-line disk in the centre. We compare our results to those of NGC1386 and show that the latter can be considered as prototypical also for this larger sample. We discuss our findings in detail for each object.Comment: 23 pages, 41 figures, accepted for publication in A&

    Multiple pathways of plasmid DNA transfer in Helicobacter pylori

    Get PDF
    Many Helicobacter pylori (Hp) strains carry cryptic plasmids of different size and gene content, the function of which is not well understood. A subgroup of these plasmids (e.g. pHel4, pHel12), contain a mobilisation region, but no cognate type IV secretion system (T4SS) for conjugative transfer. Instead, certain H. pylori strains (e.g. strain P12 carrying plasmid pHel12) can harbour up to four T4SSs in their genome (cag-T4SS, comB, tfs3, tfs4). Here, we show that such indigenous plasmids can be efficiently transferred between H. pylori strains, even in the presence of extracellular DNaseI eliminating natural transformation. Knockout of a plasmid-encoded mobA relaxase gene significantly reduced plasmid DNA transfer in the presence of DNaseI, suggesting a DNA conjugation or mobilisation process. To identify the T4SS involved in this conjugative DNA transfer, each individual T4SS was consecutively deleted from the bacterial chromosome. Using a marker-free counterselectable gene deletion procedure (rpsL counterselection method), a P12 mutant strain was finally obtained with no single T4SS (P12ΔT4SS). Mating experiments using these mutants identified the comB T4SS in the recipient strain as the major mediator of plasmid DNA transfer between H. pylori strains, both in a DNaseI-sensitive (natural transformation) as well as a DNaseI-resistant manner (conjugative transfer). However, transfer of a pHel12::cat plasmid from a P12ΔT4SS donor strain into a P12ΔT4SS recipient strain provided evidence for the existence of a third, T4SS-independent mechanism of DNA transfer. This novel type of plasmid DNA transfer, designated as alternate DNaseI-Resistant (ADR) mechanism, is observed at a rather low frequency under in vitro conditions. Taken together, our study describes for the first time the existence of three distinct pathways of plasmid DNA transfer between H. pylori underscoring the importance of horizontal gene transfer for this species

    New observations of late summer bio-physical ice and snow conditions in the northwestern Weddell Sea

    Get PDF
    Summer sea ice extent in the Weddell Sea has increased overall during the last four decades, with large interannual variations. However, the underlying causes and the related ice and snow properties are still poorly known. Here we present results of the interdisciplinary Weddell Sea Ice (WedIce) project carried out in the northwestern Weddell Sea on board the German icebreaker R/V Polarstern in February and March 2019, i.e. at the end of the summer ablation period. This is the region of the thickest, oldest ice in the Weddell Sea, at the outflow of the Weddell Gyre. Measurements included airborne ice thickness surveys and in-situ snow and ice sampling of mostly second- and third year ice. Preliminary results show mean ice thicknesses between 2.6 and 5.4 m, increasing from the Antarctic Sound towards the Larsen B region. The ice had mostly positive ice freeboard. Mean snow thicknesses ranged between 0.05 and 0.46 m. Snow was well below the melting temperature on most days and was highly metamorphic and icy, with melt-freeze forms as dominant snow type. In addition, as a result of the summer’s thaw, an average of 0.14 m of superimposed ice was found in all ice cores drilled during the cruise. Although there was rotten ice below a solid, ca. 30 cm thick surface ice layer, pronounced gap layers typical for late summer ice in the marginal ice zone were rare, and algal biomass was patchily distributed within individual sea ice cores. Overall, there was a strong gradient of increasing ice algal biomass from the Larsen B to the Antarctic Sound region. The presented results show that sea ice conditions in the northwestern Weddell Sea are still severe and have not changed significantly since the last observations carried out in 2004 and 2006. The presence of relatively thin, icy snow has strong implications for the ice and snow mass balance, for freshwater oceanography, and for the application of remote sensing methods. Overall sea ice properties strongly affect the biological productivity of this region and limit carbon fluxes to the seafloor in the northwestern Weddell Sea

    Effectiveness and Feasibility of a Remote Lifestyle Intervention by Dietitians for Overweight and Obese Adults: Pilot Study

    Get PDF
    BACKGROUND To tackle the problem of obesity and related diseases in Switzerland, cost-efficient, effective, and innovative primary health care interventions for weight management are required. In this context, Oviva has developed a scalable technology for registered dietitians to counsel overweight and obese patients via a mobile phone app. OBJECTIVE The aim of this study was to evaluate the effectiveness and feasibility of weight loss counseling by dietitians using a mobile phone app for patients with overweight and obesity. METHODS In this pre- and posttest pilot study, overweight and obese adults participated in a 1-year behavioral intervention to lose weight through remote counseling by dietitians in the German-speaking part of Switzerland. The study started in April 2016 and finished in May 2018. Participants received individual counseling through the app and the exchange with the dietitian focused on regular feedback on photo-based food log, motivation, and education. The contents were tailored to the individual lifestyle goal set. The predefined intensity of remote counseling decreased during the year. Group chat could be used. The outcomes examined were changes in weight (primary outcome), hemoglobin A1c, fasting glucose, fasting insulin, triglyceride, high-density lipoprotein cholesterol, blood pressure (BP), body mass index (BMI), waist circumference, body fat, and responses to a self-administered questionnaire with questions regarding participants' physical activity, dietary assessment, and health-related quality of life. Changes were tested at baseline, after 3 months, and after 12 months, as well as between the third and the 12th month. RESULTS In total, 36 women and 7 men, with a mean age of 40.6 years, participated and 36 participants completed the study. Median weight change after the first 12 weeks was -3.8 kg (range: -15 to 2.4 and P<.001), between week 12 and week 52 it was -1.1 kg (range: -9.7 to 7 and P=.08), and the median change during the entire period of intervention was -4.9 kg (range: -21.9 to 7.5 and P<.001). Furthermore, changes in BMI, waist circumference, body fat, and BP between baseline and 12 weeks and between baseline and 52 weeks were also significant. Significant changes in certain eating habits were also demonstrated (higher frequency of vegetable, fruit, and breakfast consumption and lower frequency of alcohol, sweet, and fat consumption). CONCLUSIONS In addition to the professional skills of a dietitian, a profession-specific app such as Oviva can provide effective support that meets the needs of dietitians and clients on the long path of behavioral change and sustainable weight reduction. TRIAL REGISTRATION ClinicalTrials.gov NCT02694614; https://clinicaltrials.gov/ct2/show/NCT02694614 (Archived by WebCite at http://www.webcitation.org/76gYkGOIc)

    Seasonal changes in snow properties from passive and active microwave satellite observations: A conceptual model.

    Get PDF
    Snowmelt processes on sea ice are the key drivers determining the seasonal sea-ice energy and mass budgets. Around Antarctica, snowmelt on pack ice is weak and very different than in the Arctic, with most snow surviving the summer. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. Doing so, we compile time series of snowmelt onset dates on perennial Antarctic sea ice from 1992 to 2014 using active microwave observations from European Remote Sensing Satellite (ERS-1/2), Quick Scatterometer (QSCAT) and Advanced Scatterometer (ASCAT) radar scatterometers. Describing snow melt processes, we define two transition stages: A weak backscatter rise indicating the initial warming and metamorphism of the snowpack (pre-melt), followed by a rapid rise indicating the onset of thaw-freeze cycles in the interior snowpack (snowmelt). We compare these with pan-Antarctic temporary snowmelt onset dates in the uppermost snowpack retrieved from diurnal variations in the brightness temperatures from passive microwave (PMW) observations. Results show that QSCAT Ku-band (13.4 GHz signal frequency) derived pre-melt and snowmelt onset dates are earlier by 25 and 11 days, respectively, than ERS and ASCAT C-band (5.6 GHz) derived dates. Snowmelt onset dates from the shortwave PMW observations (37 GHz) are later by 13 and 5 days than those from the scatterometers, respectively. Based on the observed successive timing of melt events retrieved from different sensors and microwave bands, we developed a conceptual model of the temporal evolution of snow temperature and metamorphism and their effect on different microwave wavelengths during the spring/summer transition. These results suggest that future multi-frequency microwave satellite missions could be used to resolve melt processes throughout the vertical snow column. Overall, results show that the magnitude and timing of seasonal and diurnal variations in Antarctic snow on sea ice are highly dependent on latitude, with earlier and more frequent snowmelt in the north. All retrieved melt onset dates show large interannual variability but no significant decadal trends

    Snowmelt processes on Antarctic sea ice observed by satellite scatterometers

    Get PDF
    Snowmelt processes on sea ice are the key drivers determining the seasonal sea-ice energy and mass budgets. While there is strong surface melt on Arctic sea ice, snowmelt on Antarctic sea ice is weak with most snow surviving the summer. Here, we compile time series of snowmelt onset dates on perennial Antarctic sea ice from 1992 to 2014 using active microwave observations from European Remote Sensing Satellite (ERS-1/2), Quick Scatterometer (QSCAT) and Advanced Scatterometer (ASCAT) radar scatterometers. Describing snow melt processes, we define two transition stages: A weak backscatter rise indicating the initial warming and metamorphosis of the snowpack (pre-melt), followed by a rapid rise indicating the onset of thaw-freeze cycles (snowmelt). Results show large interannual variability with average pre-melt and snowmelt onset dates of 29 November and 10 December, respectively, without any significant trends over the study period. Related to different signal frequencies, we show that QSCAT Ku-band (13.4 GHz signal frequency) derived pre-melt and snowmelt onset dates are earlier by 25 and 11 days, respectively, than ERS and ASCAT C-band (5.6 GHz) derived dates. This offset has been considered when constructing the time series. As different signal frequencies result in different penetration depths, we hypothesize that the different sensors respond to typical snowmelt processes in different depths within the snow cover

    Spatiotemporal variability and decadal trends of snowmelt processes on Antarctic sea ice observed by satellite scatterometers

    Get PDF
    The timing and intensity of snowmelt processes on sea ice are key drivers determining the seasonal sea-ice energy and mass budgets. In the Arctic, satellite passive microwave and radar observations have revealed a trend towards an earlier snowmelt onset during the last decades, which is an important aspect of Arctic amplification and sea-ice decline. Around Antarctica, snowmelt on perennial ice is weak and very different than in the Arctic, with most snow surviving the summer. Here we compile time series of snowmelt onset dates on seasonal and perennial Antarctic sea ice from 1992 to 2014/15 using active microwave observations from the European Space Agency's (ESA) European Remote Sensing (ERS) 1 and 2 missions (ERS-1 and ERS-2), Quick Scatterometer (QSCAT), and Advanced Scatterometer (ASCAT) radar scatterometers. We define two snowmelt transition stages: a weak backscatter rise, indicating the initial warming and destructive metamorphism of the snowpack (pre-melt), followed by a rapid backscatter rise, indicating the onset of thaw–freeze cycles (snowmelt). Results show large interannual variability, with an average pre-melt onset date of 29 November and melt onset of 10 December, respectively, on perennial ice, without any significant trends over the study period, consistent with the small trends of Antarctic sea-ice extent. There was a latitudinal gradient from early snowmelt onsets in mid-November in the northern Weddell Sea to late (end of December) or even absent snowmelt conditions in the southern Weddell Sea. We show that QSCAT Ku-band-derived (13.4 GHz signal frequency) pre-melt and snowmelt onset dates are earlier by 20 and 18 d, respectively, than ERS and ASCAT C-band-derived (5.6 GHz) dates. This offset has been considered when constructing the time series. Snowmelt onset dates from passive microwave observations (37 GHz) are later by 14 and 6 d than those from the scatterometers, respectively. Based on these characteristic differences between melt onset dates observed by different microwave wavelengths, we developed a conceptual model which illustrates how the seasonal evolution of snow temperature profiles may affect different microwave bands with different penetration depths. These suggest that future multi-frequency active and passive microwave satellite missions could be used to resolve melt processes throughout the vertical snow column of thick snow on perennial Antarctic sea ice
    • …
    corecore