22 research outputs found

    Pneumococcal polysaccharide abrogates conjugate-induced germinal center reaction and depletes antibody secreting cell pool, causing hyporesponsiveness.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.Plain pneumococcal polysaccharide (PPS) booster administered during second year of life has been shown to cause hyporesponsiveness. We assessed the effects of PPS booster on splenic memory B cell responses and persistence of PPS-specific long-lived plasma cells in the bone marrow (BM).Neonatal mice were primed subcutanously (s.c.) or intranasally (i.n.) with pneumococcal conjugate (Pnc1-TT) and the adjuvant LT-K63, and boosted with PPS+LT-K63 or saline 1, 2 or 3 times with 16 day intervals. Seven days after each booster, spleens were removed, germinal centers (GC), IgM(+), IgG(+) follicles and PPS-specific antibody secreting cells (AbSC) in spleen and BM enumerated.PPS booster s.c., but not i.n., compromised the Pnc1-TT-induced PPS-specific Abs by abrogating the Pnc1-TT-induced GC reaction and depleting PPS-specific AbSCs in spleen and limiting their homing to the BM. There was no difference in the frequency of PPS-specific AbSCs in spleen and BM between mice that received 1, 2 or 3 PPS boosters s.c.. Repeated PPS+LT-K63 booster i.n. reduced the frequency of PPS-specific IgG(+) AbSCs in BM.PPS booster-induced hyporesponsiveness is caused by abrogation of conjugate-induced GC reaction and depletion of PPS-specific IgG(+) AbSCs resulting in no homing of new PPS-specific long-lived plasma cells to the BM or survival. These results should be taken into account in design of vaccination schedules where polysaccharides are being considered.Icelandic Research Fund for Graduate Students/ 50940005, Icelandic Research Fund/40438021-23, Eimskip University Fund, University of Iceland Research Fund, Landspitali University Hospital Research Fun

    The adjuvants dmLT and mmCT enhance humoral immune responses to a pneumococcal conjugate vaccine after both parenteral or mucosal immunization of neonatal mice

    Get PDF
    Immaturity of the neonatal immune system contributes to increased susceptibility to infectious diseases and poor vaccine responses. Therefore, better strategies for early life vaccination are needed. Adjuvants can enhance the magnitude and duration of immune responses. In this study we assessed the effects of the adjuvants dmLT and mmCT and different immunization routes, subcutaneous (s.c.) and intranasal (i.n.), on neonatal immune response to a pneumococcal conjugate vaccine Pn1-CRM197. Pn1-specific antibody (Ab) levels of neonatal mice immunized with Pn1-CRM197 alone were low. The adjuvants enhanced IgG Ab responses up to 8 weeks after immunization, more after s.c. than i.n. immunization. On the contrary, i.n. immunization with either adjuvant enhanced serum and salivary IgA levels more than s.c. immunization. In addition, both dmLT and mmCT enhanced germinal center formation and accordingly, dmLT and mmCT enhanced the induction and persistence of Pn1-specific IgG+ Ab-secreting cells (ASCs) in spleen and bone marrow (BM), irrespective of the immunization route. Furthermore, i.n. immunization enhanced Pn1-specific IgA+ ASCs in BM more than s.c. immunizatiofimmu.2022.1078904n. However, a higher i.n. dose of the Pn1-CRM197 was needed to achieve IgG response comparable to that elicited by s.c. immunization with either adjuvant. We conclude that dmLT and mmCT enhance both induction and persistence of the neonatal immune response to the vaccine Pn1-CRM197, following mucosal or parenteral immunization. This indicates that dmLT and mmCT are promising adjuvants for developing safe and effective early life vaccination strategies

    LT-K63 Enhances B Cell Activation and Survival Factors in Neonatal Mice That Translates Into Long-Lived Humoral Immunity

    Get PDF
    Funding text 1 AA was a recipient of a doctoral study grant from the University of Iceland Research Fund (2015–18). This study was financially supported by grants from the Icelandic Research Fund (130675051-53), The University of Iceland Research Fund (2014–17) and the Landspitali Science Fund A-2015-083, A2015-084, A-2016-067, A-2017-069. Funding text 2 Part of the work presented in this paper was presented as posters at the European Congress of Immunology, Vienna, Austria, 6?9. September 2015 (abstract no P.A.27.14 and P.A.27.15) and at V?sindi a? hausti, scientific conference at Landsp?tali - the National University Hospital of Iceland, Reykjav?k, 7. October 2020 (abstract number 8). Funding. AA was a recipient of a doctoral study grant from the University of Iceland Research Fund (2015?18). This study was financially supported by grants from the Icelandic Research Fund (130675051-53), The University of Iceland Research Fund (2014?17) and the Landspitali Science Fund A-2015-083, A2015-084, A-2016-067, A-2017-069. Publisher Copyright: © Copyright © 2020 Aradottir Pind, Molina Estupiñan, Magnusdottir, Del Giudice, Jonsdottir and Bjarnarson.Adjuvants enhance magnitude and duration of immune responses induced by vaccines. In this study we assessed in neonatal mice if and how the adjuvant LT-K63 given with a pneumococcal conjugate vaccine, Pnc1-TT, could affect the expression of tumor necrosis factor receptor (TNF-R) superfamily members, known to be involved in the initiation and maintenance of antibody responses; B cell activating factor receptor (BAFF-R) and B cell maturation antigen (BCMA) and their ligands, BAFF, and a proliferation inducing ligand (APRIL). Initially we assessed the maturation status of different B cell populations and their expression of BAFF-R and BCMA. Neonatal mice had dramatically fewer B cells than adult mice and the composition of different subsets within the B cell pool differed greatly. Proportionally newly formed B cells were most abundant, but they had diminished BAFF-R expression which could explain low proportions of marginal zone and follicular B cells observed. Limited BCMA expression was also detected in neonatal pre-plasmablasts/plasmablasts. LT-K63 enhanced vaccine-induced BAFF-R expression in splenic marginal zone, follicular and newly formed B cells, leading to increased plasmablast/plasma cells, and their enhanced expression of BCMA in spleen and bone marrow. Additionally, the induction of BAFF and APRIL expression occurred early in neonatal mice immunized with Pnc1-TT either with or without LT-K63. However, BAFF+ and APRIL+ cells in spleens were maintained at a higher level in mice that received the adjuvant. Furthermore, the early increase of APRIL+ cells in bone marrow was more profound in mice immunized with vaccine and adjuvant. Finally, we assessed, for the first time in neonatal mice, accessory cells of the plasma cell niche in bone marrow and their secretion of APRIL. We found that LT-K63 enhanced the frequency and APRIL expression of eosinophils, macrophages, and megakaryocytes, which likely contributed to plasma cell survival, even though APRIL+ cells showed a fast decline. All this was associated with enhanced, sustained vaccine-specific antibody-secreting cells in bone marrow and persisting vaccine-specific serum antibodies. Our study sheds light on the mechanisms behind the adjuvanticity of LT-K63 and identifies molecular pathways that should be triggered by vaccine adjuvants to induce sustained humoral immunity in early life.Peer reviewe

    A comparative study of adjuvants effects on neonatal plasma cell survival niche in bone marrow and persistence of humoral immune responses

    Get PDF
    Funding Information: AP was a recipient of a doctoral study grant from the University of Iceland Research Fund (2015-18). This study was financially supported by grants from the Icelandic Research Fund (130675051-53), The University of Iceland Research Fund (2018-20) and the Landspitali Science Fund (A-2017-068, A-2017-069, A-2018-076, A-2018-077, A-2019-084). Publisher Copyright: Copyright © 2022 Aradottir Pind, Thorsdottir, Magnusdottir, Meinke, Del Giudice, Jonsdottir and Bjarnarson. Copyright © 2022 Aradottir Pind, Thorsdottir, Magnusdottir, Meinke, Del Giudice, Jonsdottir and Bjarnarson.The neonatal immune system is distinct from the immune system of older individuals rendering neonates vulnerable to infections and poor responders to vaccination. Adjuvants can be used as tools to enhance immune responses to co-administered antigens. Antibody (Ab) persistence is mediated by long-lived plasma cells that reside in specialized survival niches in the bone marrow, and transient Ab responses in early life have been associated with decreased survival of plasma cells, possibly due to lack of survival factors. Various cells can secrete these factors and which cells are the main producers is still up for debate, especially in early life where this has not been fully addressed. The receptor BCMA and its ligand APRIL have been shown to be important in the maintenance of plasma cells and Abs. Herein, we assessed age-dependent maturation of a broad range of bone marrow accessory cells and their expression of the survival factors APRIL and IL-6. Furthermore, we performed a comparative analysis of the potential of 5 different adjuvants; LT-K63, mmCT, MF59, IC31 and alum, to enhance expression of survival factors and BCMA following immunization of neonatal mice with tetanus toxoid (TT) vaccine. We found that APRIL expression was reduced in the bone marrow of young mice whereas IL-6 expression was higher. Eosinophils, macrophages, megakaryocytes, monocytes and lymphocytes were important secretors of survival factors in early life but undefined cells also constituted a large fraction of secretors. Immunization and adjuvants enhanced APRIL expression but decreased IL-6 expression in bone marrow cells early after immunization. Furthermore, neonatal immunization with adjuvants enhanced the proportion of plasmablasts and plasma cells that expressed BCMA both in spleen and bone marrow. Enhanced BCMA expression correlated with enhanced vaccine-specific humoral responses, even though the effect of alum on BCMA was less pronounced than those of the other adjuvants at later time points. We propose that low APRIL expression in bone marrow as well as low BCMA expression of plasmablasts/plasma cells in early life together cause transient Ab responses and could represent targets to be triggered by vaccine adjuvants to induce persistent humoral immune responses in this age group.Peer reviewe

    Short Vi-polysaccharide abrogates T-independent immune response and hyporesponsiveness elicited by long Vi-CRM197 conjugate vaccine

    Get PDF
    Publisher Copyright: © 2020 National Academy of Sciences. All rights reserved.Polysaccharide-protein conjugates have been developed to overcome the T-independent response, hyporesponsiveness to repeated vaccination, and poor immunogenicity in infants of polysaccharides. To address the impact of polysaccharide length, typhoid conjugates made with short- and long-chain fractions of Vi polysaccharide with average sizes of 9.5, 22.8, 42.7, 82.0, and 165 kDa were compared. Long-chain-conjugated Vi (165 kDa) induced a response in both wild-type and T cell-deficient mice, suggesting that it maintains a T-independent response. In marked contrast, short-chain Vi (9.5 to 42.7 kDa) conjugates induced a response in wild-type mice but not in T cell-deficient mice, suggesting that the response is dependent on T cell help. Mechanistically, this was explained in neonatal mice, in which long-chain, but not short-chain, Vi conjugate induced late apoptosis of Vi-specific B cells in spleen and early depletion of Vi-specific B cells in bone marrow, resulting in hyporesponsiveness and lack of long-term persistence of Vi-specific IgG in serum and IgG+ antibody-secreting cells in bone marrow. We conclude that while conjugation of long-chain Vi generates T-dependent antigens, the conjugates also retain T-independent properties, leading to detrimental effects on immune responses. The data reported here may explain some inconsistencies observed in clinical trials and help guide the design of effective conjugate vaccines.Peer reviewe

    Clara cell protein 16 (CC16) serum levels in infants during respiratory syncytial virus infection

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldNo Abstrac

    To Minister of State for Defence

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldNeonates have a poorly developed immune system. Therefore it is important to develop vaccination strategies that induce protective immunity and immunological memory against pathogens early in life. The immunogenicity of a meningococcal serogroup C polysaccharide conjugate (MenC-CRM(197)) was assessed in neonatal mice, and effects of LT-K63 and CpG2006 and immunisation routes were compared. Neonatal mice were primed subcutaneously (s.c.) or intranasally (i.n.) with MenC-CRM(197) with or without LT-K63 or CpG2006 and re-immunised 16 and 30 days later by the same route and formulation. Antibody levels were measured and generation of immunological memory assessed by affinity maturation and kinetics of the Ab response. Serum bactericidal activity (SBA) was measured to evaluate protective efficacy. The second and third dose of MenC-CRM(197) mixed with either LT-K63 or CpG2006 induced a rapid increase in MenC-specific IgG antibodies, to levels higher than elicited by MenC-CRM(197) alone (P<0.01) and in unimmunised mice (P<0.001), indicating efficient generation of memory by priming through both s.c. and i.n. routes. SBA was detected after three s.c. immunisations with MenC-CRM(197) s.c. alone. However, only two doses of MenC-CRM(197)+LT-K63 or MenC-CRM(197)+CpG2006 were needed to induce SBA levels>16. LT-K63 and CpG2006 enhanced neonatal antibody responses, affinity maturation, immunological memory to the conjugate MenC-CRM(197) and protective immunity. These results encourage the development of neonatal vaccination strategies to induce protective immunity and immunological memory against meningococcal disease

    The adjuvant LT-K63 can restore delayed maturation of follicular dendritic cells and poor persistence of both protein- and polysaccharide-specific antibody-secreting cells in neonatal mice.

    No full text
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links field.Ab responses in early life are low and short-lived; therefore, induction of protective immunity requires repeated vaccinations. One of the major limitations in early-life immunity is delayed maturation of follicular dendritic cells (FDCs), which play a central role in mediating the germinal center (GC) reaction leading to production of Ab-secreting cells (AbSCs). We assessed whether a nontoxic mutant of Escherichia coli heat-labile enterotoxin (LT-K63) and CpG1826 as model adjuvants could accelerate FDC maturation and immune response in neonatal mice, using a pneumococcal polysaccharide of serotype 1 conjugated to tetanus toxoid (Pnc1-TT) as a model vaccine. In neonatal NMRI mice, a single dose of Pnc1-TT coadministered with LT-K63 enhanced Pnc1-TT-induced GC reaction. In contrast, CpG1826 had no effect. Accordingly, LT-K63, but not CpG1826, accelerated the maturation of FDC networks, detected by FDC-M2(+) staining, characteristic for adult-like FDCs. This coincided with migration of MOMA-1(+) macrophages into the GCs that can enhance GC reaction and B cell activation. The FDC-M2(+) FDC networks colocalized with enhanced expression of TNF-α, which is critical for the maintenance of mature FDCs and is poorly expressed in neonates. The accelerated maturation of FDC networks correlated with increased frequency and prolonged persistence of polysaccharide- and protein-specific IgG(+) AbSCs in spleen and bone marrow. Our data show for the first time, to our knowledge, that an adjuvant (LT-K63) can overcome delayed maturation of FDCs in neonates, enhance the GC reaction, and prolong the persistence of vaccine-specific AbSCs in the BM. These properties are attractive for parenteral vaccination in early life.Icelandic Research Fund Landspitali University Hospital Research Fund University of Iceland Research Fund European Commission Icelandic Research Fund for Graduate Students Eimskip Fund of the University of Icelan

    PPS-1 booster abrogation of Pnc1-TT-induced GCs reduces levels, avidity and protective efficacy of PPS-1-specific IgG.

    No full text
    <p>PPS-1-specific IgG levels (mean EU/ml±SD) in serum (A) and their avidity index (mean AI±SD) (B) measured by ELISA −2 days before and 7, 23 and 39 days after s.c. (left panels) or i.n. (right panels) booster with saline (open squares), PPS-1+LT-K63 (filled squares) in mice primed with Pnc1-TT as neonates or unvaccinated controls (open circles). Six weeks after the booster the mice were challenged with live <i>S. pneumoniae</i> serotype 1 to assess protection against bactermia and lung lung infection <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0072588#pone.0072588-Jakobsen1" target="_blank">[26]</a>. Pneumococcal colony forming units (CFU/ml) in blood (C, left graph) and lungs (C, right graph) 24 h after challenge shown for each mouse (N = 8/group), the median for each group is indicated by a line. Statistical difference in bacteremia or lung infection between vaccinated groups is indicated in the graphs. The results shown are from one of two independent experiments (eight mice/group for each time point) showing comparable results.</p

    Natural killer cells play an essential role in resolution of antigen-induced inflammation in mice.

    No full text
    To access publisher's full text version of this article click on the hyperlink belowThis study examined whether NK cells are important for resolution of antigen-induced inflammation. C57BL/6 mice were immunized twice with methylated BSA (mBSA) and inflammation induced by intraperitoneal injection of mBSA. Mice were injected intravenously with anti-asialo GM1 (αASGM1) or a control antibody 24h prior to peritonitis induction and peritoneal exudate collected at different time points. Expression of surface molecules and apoptosis on peritoneal cells was determined by flow cytometry and concentration of chemokines, cytokines, soluble cytokine receptors and lipid mediators by ELISA and LC-MS/MS. Apoptosis in parathymic lymph nodes and spleens was determined by TUNEL staining. Mice administered αASGM1 had lower peritoneal NK cell numbers and a higher number of peritoneal neutrophils 12h after induction of inflammation than control mice. The number of neutrophils was still high in the αASGM1 treated mice when their number had returned to baseline levels in the control mice, 48h after induction of inflammation. Peritoneal concentrations of the neutrophil regulators G-CSF and IL-12p40 were higher at 12h in the αASGM1 treated mice than in the control mice, whereas concentrations of lipid mediators implicated in resolution of inflammation, i.e. LXA4and PGE2, were lower. Reduced apoptosis was detected in peritoneal neutrophils as well as in draining lymph nodes and spleens from the αASGM1 treated mice compared with that in the control mice. In addition, αASGM1 treated mice had lower number of peritoneal NK cells expressing NKp46 and NKG2D, receptors implicated in NK cell-induced neutrophil apoptosis. Furthermore, αASGM1 treatment completely blocked the increase in CD27+NK cells that occurred in control mice following induction of inflammation, but CD27+NK cells have been suggested to have a regulatory role. These results indicate a crucial role for NK cells in resolution of antigen-induced inflammation and suggest their importance in tempering neutrophil recruitment and maintaining neutrophil apoptosis.Landspitali University Hospital Research Fund University of Iceland Research Fund in Iceland Prof. Jan Veltkamp fonds in Netherland
    corecore