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Abstract

Background: Plain pneumococcal polysaccharide (PPS) booster administered during second year of life has been shown to
cause hyporesponsiveness. We assessed the effects of PPS booster on splenic memory B cell responses and persistence of
PPS-specific long-lived plasma cells in the bone marrow (BM).

Methods: Neonatal mice were primed subcutanously (s.c.) or intranasally (i.n.) with pneumococcal conjugate (Pnc1-TT) and
the adjuvant LT-K63, and boosted with PPS+LT-K63 or saline 1, 2 or 3 times with 16 day intervals. Seven days after each
booster, spleens were removed, germinal centers (GC), IgM+, IgG+ follicles and PPS-specific antibody secreting cells (AbSC)
in spleen and BM enumerated.

Results: PPS booster s.c., but not i.n., compromised the Pnc1-TT-induced PPS-specific Abs by abrogating the Pnc1-TT-
induced GC reaction and depleting PPS-specific AbSCs in spleen and limiting their homing to the BM. There was no
difference in the frequency of PPS-specific AbSCs in spleen and BM between mice that received 1, 2 or 3 PPS boosters s.c..
Repeated PPS+LT-K63 booster i.n. reduced the frequency of PPS-specific IgG+ AbSCs in BM.

Conclusions: PPS booster-induced hyporesponsiveness is caused by abrogation of conjugate-induced GC reaction and
depletion of PPS-specific IgG+ AbSCs resulting in no homing of new PPS-specific long-lived plasma cells to the BM or
survival. These results should be taken into account in design of vaccination schedules where polysaccharides are being
considered.
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Introduction

High susceptibility to infectious diseases by polysaccharide (PS)

encapsulated bacteria like Streptococcus pneumoniae characterizes the

neonatal and infant period mainly due to the inability of the

neonates and infants to elicit immune response to the PS capsule, a

T cell independent type 2 (TI-2) antigen [1,2]. Neonates become

colonized by pneumococci soon after birth, in particular in

developing countries, where prevalence of pneumococcal carriage

is high [3]. Early colonization and prolonged carriage are believed

to contribute to the high incidence and early onset of pneumo-

coccal diseases in developing countries [4]. Furthermore, maternal

pneumococcal carriage and younger maternal age are indepen-

dent risk factors for early onset of pneumococcal carriage in infants

in high-risk areas [5].

Hyporesponsiveness, defined as a lower antibody (Ab) level after

the second immunization than after the first, has been observed

after repeated immunizations with plain pneumococcal PS

vaccines (PPV) in infants and toddlers for many of the serotypes

[6,7], as well as in the elderly [8]. Conjugating pneumococcal PS

(PPS) to carrier proteins enhances their immunogenicity and

renders the immune response T cell dependent (TD) [9].

Pneumococcal conjugate vaccines (PCV), unlike PPV, elicit IgG

Abs and immunological memory during infancy [10]. PPS-specific

memory after primary PCV series in infants has been demon-

strated by plain PPS challenge in the second year, using the

anamnestic response and affinity maturation of PPS-specific IgG

as surrogate markers for memory [11,12]. However, PPS

administration after PCV priming [13,14], pneumococcal coloni-

zation before or at the time of first infant dose of PCV [15,16,17]
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and previous invasive pneumococcal disease (IPD) [18,19] have

been reported to impair serotype-specific Ab responses to PPV or

PCV. The phenomenon of PS-induced hyporesponsiveness is well

established [20], but the mechanism is not fully understood.

However, PS stimulation of conjugate-induced memory B cells to

terminally differentiate into Ab-producing plasma cells without

replenishing the memory pool has been suggested [21]. PPV is

recommended for elderly and adults 19–64 years of age at high

risk of pneumococcal infection [22], whereas PCV is recom-

mended for routine infant vaccinations with 2–3 primary doses

before 6 months and a PCV booster 9–15 months of age, as well as

for youths aged #18 years with underlying medical conditions that

increase their risk for pneumococcal disease [23]. The cost of the

current PCVs limits their use in resource-poor countries where

pneumococcal disease burden is greatest. Other cost-effective

alternative schedules have been suggested, both reduction of PCV

primary doses and introducing PPV booster instead of PCV

[24,25]. Thus, it is of great importance to understand the precise

effects of plain PS on the early life immune system before such

policy decisions are made.

Our early life murine model reproduces the main features of

infant responses to both plain PPS of serotype 1 (PPS-1) and PCV

(PPS-1 conjugated to tetanus toxoid (TT); Pnc1-TT) [26,27,28].

We have shown that PPS-1 compromises the ongoing PPS-1-

specific Ab response induced by Pnc1-TT priming in neonatal

mice, only when administered subcutanously (s.c.), but not

intranasally (i.n) [27].

The aim of this study was to determine the effects of single and

repeated PPS-1 boosters on conjugate-induced PPS-1- and TT-

carrier-specific B cell memory responses in the spleen, and homing

of long-lived plasma cells (antibody secreting cells; AbSCs) to the

bone marrow (BM) in mice primed with Pnc1-TT as neonates.

The results show that a single dose of plain PPS-1 s.c. is

sufficient to completely deplete the PPS-1-specific memory cell

and AbSC pool established by pneumococcal conjugate priming in

neonatal mice, since PPS-1 abrogates the conjugate-induced

germinal center reaction, thus causing hyporesponsiveness.

Materials and Methods

Ethics statement
The animal experiments were approved by the Experimental

Animal Committee of Iceland (ref. YDL05020034/023/BE),

according to the Act on Animal protection nr. 15/1994 (revised

Dec. 2008) and Regulations on Animal experimentation nr. 279/

2002.

Mice
NMRI mice (M&B AS, Ry, Denmark) were kept with free

access to food and water, with regulated daylight, humidity and

temperature. Breeding cages were checked daily and pups kept

with the mothers until weaning.

Vaccine and Adjuvant
PPS of serotypes 1 (PPS-1) and 19F (PPS-19F) was provided and

conjugated to tetanus-toxoid (Pnc1-TT, Pnc19F-TT) [29] by

Sanofi Pasteur (Marcy l’Etoile, France). LT-K63 was produced

and purified [30] by Novartis Vaccines and Diagnostics (Siena,

Italy).

Immunization
Three sets of experiments were performed. In the first set of

experiments, presented in the first and second results chapters,

neonatal (7 days) mice (8 per group) were immunized s.c. with

0.5 mg Pnc1-TT or Pnc19F-TT (human dose in the PCV Prevenar

is 2 mg) w/wo 5.0 mg of LT-K63 in 50 ml saline into the scapular

girdle or i.n. in 26 3.0 ml saline with 30 min interval into the

nares. Mice were boosted 16 days later by the same route with

saline or 5.0 mg of PPS-1 or PPS-19F (1/5 of a human dose) with

5.0 mg LT-K63 or 0.5 mg conjugate of serotype 1 or 19F with

5.0 mg LT-K63. Control mice received saline at all time-points.

The mice were sacrificed 7 days after booster, cells isolated from

BM and half of each spleen to numerate PPS-1- and TT-specific

IgG+ AbSCs by ELISPOT. The other half of each spleen was

frozen in Tissue-Tek OCT compound (Sakura, Zouterwoude, The

Netherlands) and stored at 270uC until cryosections were cut for

Figure 1. Subcutaneous administration of PPS-1 booster depletes Pnc1-TT-induced PPS-1-specific AbSC pool in the spleen. PPS-1
(upper panels) and TT (lower panels) specific IgG+ AbSC measured by ELISPOT in spleen (A and B) and bone marrow (C and D), shown as number of
spots (mean6SD) per 106 spleen cells and PPS-1- and TT-specific IgG levels (mean EU/ml6SD) in serum measured by ELISA (E and F). Results are
shown for mice boosted by either i.n. or s.c. route with saline (open columns), PPS-1+LT-K63 (black columns), Pnc1-TT+LT-K63 (grey columns) and
unvaccinated controls (stribe columns), as indicated. Statistical difference between vaccinated groups is indicated in the graphs. All vaccinated mice
had significantly higher frequency of PPS-1 -specific IgG+ AbSCs in spleen and BM and also higher serum IgG anti-PPS-1 levels compared to
unvaccinated controls (B–F), except mice that received PPS-1 booster s.c. which had comparable frequency of PPS-1-specific IgG+ AbSCs in spleen (A).
The results shown in A–F are from one of two independent experiments showing comparable results (8 mice per group in each experiment).
doi:10.1371/journal.pone.0072588.g001
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immunohistological staining. Serum samples for Ab measurements

were obtained 2 days before and 7 days after the booster. In the

second set of experiments the long-term effect of PPS-1 booster on

PPS-1- and TT-specific IgG+ AbSCs in spleen and BM from 7

days to 6 weeks was assessed as presented in the third result

chapter. Neonatal (7 days) mice (8 per group and time point) were

immunized s.c. with 0.5 mg Pnc1-TT w/wo 5.0 mg of LT-K63 in

50 ml saline or i.n. in 26 3.0 ml saline (as described above). Mice

were boosted 16 days later by the same route with saline or 5.0 mg

of PPS-1 with 5.0 mg LT-K63 or with 0.5 mg Pnc1-TT with 5.0 mg

LT-K63. Control mice received saline at all time points. Eight

mice per group and time point were sacrificed on days 7, 23 and

39 after booster and cells from spleen and BM isolated to

numerate PPS-1- and TT-specific IgG+ AbSCs by ELISPOT.

Serum samples for Ab measurements were obtained 2 days before

and 7, 23 and 39 days after booster. In the third set of experiments

the effects of repeated PPS-1 boosters s.c. or i.n. on Pnc1-TT-

induced PPS-1-specific memory cells in spleen and persistence of

long-lived plasma cells in BM was assessed as described in the

fourth and fifth results chapters. Neonatal mice (8 per group and

time point) were primed with 0.5 mg Pnc1-TT with 5.0 mg LT-

K63 in 50 ml saline s.c. or in 26 3.0 ml saline i.n. (as described

above) and boosters of PPS-1+LT-K63 or saline administered by

the same routes 1, 2 or 3 times with 16 days interval. Seven days

after each administration, at days 7, 23 or 39 after the first booster,

PPS-1- and TT-specific IgG+ AbSCs were enumerated in spleen

and BM. Serum samples for Ab measurements were obtained 2

days before and 7, 23 and 39 days after booster.

Enumeration of AbSC
PPS-1- and TT-specific AbSCs were enumerated by enzyme-

linked immunosorbent spot (ELISPOT) [28]. MultiScreen High

protein binding immobilon-P membrane plates (Millipore Corpo-

ration, Bedford, MA, USA) were coated with 20 mg/ml PPS-1

(American Type Culture Collection, ATCC, Rockville, MD, USA)

or 10 mg/ml TT (Sanofi Pasteur) overnight at 37uC and blocked

with RPMI 1640 (Gibco BRL, Life Technologies, Paisley, UK)

supplemented with L-glutamin (Gibco BRL), penicillin and

streptomycin (Gibco BRL) and 5% foetal calf serum (Gibco

BRL). Spleen or BM cells, isolated from immunized mice (108

cells/ml) were serially diluted in complete RPMI 1640 and

incubated for 5 h at 37uC. Alkaline phosphate (ALP)-goat-anti-

mouse IgG (Southern Biotechnology Associates Inc., Birmingham,

AL, USA) was incubated overnight and the reaction developed by

5-bromo-4-chloro-3-indolylphosphate and nitroblue tetrazolium

in ALP development buffer (BioRad Labs, Hercules, CA, USA).

Spots were counted using a microscope (Zeiss, Oberkochen,

Germany) and analyzed with KS ELISPOT (Zeiss).

Antibody measurements
PPS-1- and TT-specific IgG Abs were measured by enzyme-

linked immunosorbent assay (ELISA) [26]. Microplates (Max-

iSorp; Nunc AS, Roskilde, Denmark) were coated with 5 mg/ml

PPS-1 (ATCC) 5 h at 37uC, or 5 mg/ml TT (Sanofi Pasteur)

overnight at 4uC and serum and standard, neutralized by cell wall

polysaccharide (Statens Serum Institute, Copenhagen, Denmark),

incubated for 2 h, followed by horseradish peroxidase (HRP)-goat

anti-mouse Ig (Southern Biotechnology Associates). The reaction

was developed by 3,39,5,59-tetrametylbenzidine peroxidase sub-

strate (Kirkegaard & Perry Laboratories, Gaithersburg, MD,

USA), stopped and read at 450 nm in Titertek Multiscan Plus MK

II spectrophotometer (ICN Flow Laboratories, Irvine, UK).

Results were expressed as mean log ELISA units (EU)/ml 6SD,

calculated from the standard.

Figure 2. Plain PPS-1 booster abrogates the Pnc1-TT-induced GC reaction in mice primed as neonates. (A–C) Mean number of follicles
and (D) ratio of GC/follicle per section in consecutive sections from spleen of mice that received booster by either s.c. (left columns) or i.n. (right
columns) route with saline (open columns), PPS-1+LT-K63 (black columns), Pnc1-TT+LT-K63 (grey columns) and unvaccinated controls (stribe
columns), as indicated. Spleens were removed 7 days after booster in mice primed as neonates with Pnc1-TT+LT-K63 by the same route as the
booster. Half of the spleen was snap frozen, serial cryosection prepared, cutting into 7 mm sections at four levels, starting 700 mm into the tissue and
the levels separated by 210 mm. Section from all 4 levels were stained with (A) anti-IgM, (B) anti-IgG, (C) PNA, and results (mean6SD) shown for each
group. (D) Mean ratio of GC/follicle was calculated for every spleen at all 4 levels for individual mice and results (mean6SD) shown for each group.
Statistical difference between vaccinated groups is stated in the graphs. Results in A–D are from one representative of two independent experiments
(8 mice per group) showing comparable results.
doi:10.1371/journal.pone.0072588.g002
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Avidity of PPS and TT Abs
Avidity of IgG Abs was measured by ELISA with a potassium

thiocyanate (KSCN) elution step [28]. Results were expressed as

avidity index, AI = [M] KSCN displacing 50% of Abs.

Immunohistochemistry
Spleens frozen in Tissue-Tek OCT (Sakura) were cut into 7 mm

cryosections at 4 levels separated by 210 mm, starting 700 mm into

the tissue, fixed in acetone for 10 min and stored at 270uC. Four

sections/spleen were stained with peanut agglutinin (PNA)-biotin

(Vector Laboratories Inc., Burlingame, CA, USA) followed by

ALP-conjugated avidin (Mabtech AB, Nacka Strand, Sweden) or

TexasRed-avidin (Jackson ImmunoResearch Laboratories Inc.,

Suffolk, UK) to enumerate GCs, where GCs with immature

staining pattern were excluded. Double fluorescent staining was

performed with PNA and MOMA-1-FITC (AbD Serotec,

Düsseldorf, Germany) that identifies metallophilic marginal

macrophages that form a continuous circular lining around the

follicles. Sections were also stained with IgM-HRP or IgG-HRP

(Southern Biotechnology Associates) to enumerate non-switched

and switched B cells. The sections were photographed with a

digital camera (AXIOCAM; Zeiss) using a microscope (Zeiss)

equipped with610 and 640 objectives and AxioImaging software

(Birkerod, Denmark). The average of GCs per follicle was

calculated for each spleen.

Pneumococcal challenge
Six weeks after booster, mice were challenged i.n. with 2.36107

colony forming units (CFU) of S. pneumoniae serotype 1 (ATCC

6301, ATCC) in log-phase resuspended in 50 ml sterile saline, as

previously described [26]. After 24 h the mice were sacrificed,

blood samples taken from the tail vein and plated on blood agar

(Difco Laboratories, Detroit, MI, USA) with Staph/Strep selective

supplement containing nalidixic acid and solistin sulphate (Oxoid,

Basingstoke, UK) and incubated at 37uC in 5% CO2 overnight.

Bacteremia was determined as the number of CFU/ml blood.

Lungs were removed, homogenized and diluted to 3 ml saline,

serial dilutions plated on blood agar and incubated for 48 h at

37uC under anaerobic conditions. Pneumococcal lung infection

was expressed as CFU/ml lung homogenate. Depending on the

first dilution used, the detection limits were log 2.2 CFU/ml lung

homogenate and log 1.3 CFU/ml blood.

Statistical analysis
Comparison between groups and time points was performed by

Mann Whitney Rank sum test (unpaired data) using GraphPad

Prism (GraphPad Software, Inc., La Jolla, CA, USA). A P value of

,0.05 was considered statistically significant.

Results

Plain PPS-1 booster s.c. depletes PPS-1-specific IgG+

AbSCs in spleen induced by neonatal Pnc1-TT-priming
The effects of PPS-1 booster on IgG+ AbSCs in spleen and BM

and PPS-1 specific antibodies in serum was studied 7 days after

priming neonatal mice s.c. or i.n. with Pnc1-TT+LT-K63.

Mice primed s.c. with Pnc1-TT and boosted s.c. with PPS-1 had

lower frequency of PPS-1-specific IgG+ AbSCs in spleen than mice

that received saline or Pnc1-TT, reflected in lower serum IgG

anti-PPS-1 levels. No difference was observed in the frequency of

PPS-1-specific IgG+ AbSCs in the BM of mice that received PPS-1

booster compared with saline, but there was a difference

compared with Pnc1-TT booster (Figure 1). Mice that received

PPS-1 booster i.n. had higher frequency of PPS-1-specific IgG+

AbSCs in spleen than mice that received saline, but not in BM

(Figure 1). However, no differences were observed between the

frequency of PPS-1-specific IgG+ AbSCs in the spleen or BM of

mice that received PPS-1 or Pnc1-TT boosters. All vaccinated

mice had significantly higher frequency of PPS-1-specific IgG+

AbSCs in spleen and BM and also higher serum IgG anti-PPS-1

levels compared with unvaccinated control, except mice that

received PPS-1 booster s.c., which had comparable frequency of

PPS-1-specific IgG+ AbSCs in spleen. The depletion of Pnc1-TT-

induced PPS-1-specific memory by PPS-1 booster s.c. did not

affect the frequency of AbSCs specific for the TT carrier of the

vaccine. To investigate whether the interval between the conjugate

priming and PPS booster might explain the lack of a response to

the PPS-1 booster s.c. at day 16, two groups of neonatal mice were

primed with Pnc1-TT and received PPS-1 booster 16 days or

4 weeks later. No IgG response was observed in either group

(Figure S1A). Also, different doses of PPS-1 booster (0.5 mg, 2.0 mg

or 5.0 mg) were compared, and no response to any of the doses was

observed (Figure S1B). Since PPS of serotype 1 is zwitterionic and

might therefore be presented within MHC class II and activate T-

cells [31], we also tested the effects of PPS booster of a non-

zwitterionic PPS following priming with a conjugate of the same

serotype. Neonatal mice were primed s.c. with a monovalent

pneumococcal conjugate Pnc19F-TT and boosted 16 days later

with plain PPS-19F by the s.c. route. As seen for PPS-1, the PPS-

19F booster also induced hyporesponsiveness (Figure S1C). The

Figure 3. Plain PPS-1 booster s.c. abrogates the Pnc1-TT-
induced GC reaction in mice primed as neonates. Active germinal
centers in spleen sections were enumerated with PNA staining (upper
panels). Double fluorescent staining was performed with PNA and
MOMA-1 (metallophilic marginal macrophages) to show the follicular
structure (top panel). IgM+ and IgG+ follicles were identified with anti-
IgM (middle panel) and anti-IgG (lower panel) staining, 7 days after
booster with 5.0 mg PPS-1 and 5.0 mg LT-K63 s.c. (left) or i.n. (right).
Spleen sections, 7 mm, were prepared from four different levels in the
spleen, starting 700 mm into the tissue and each level separated by
210 mm. One representative section per group is shown. Results are
from one representative of two independent experiments (8 mice per
group) showing comparable results.
doi:10.1371/journal.pone.0072588.g003
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results clearly demonstrate that the PPS-1 booster s.c. compro-

mised the Pnc1-TT-induced PPS-1-specific Abs by depleting PPS-

1-specific IgG+ AbSCs in spleen, irrespective of dosage, interval

between priming and booster administration, and that hypore-

sponsiveness can be induced by both zwitterionic and non-

zwitterionic PPS.

PPS-1 booster s.c. abrogates the conjugate-induced
germinal center reaction

We assessed the effect of PPS-1 booster on Pnc1-TT-induced

GC reaction by enumerating GCs and unswitched and Ig-

switched B cell follicles, 7 days after boosters with adjuvanted plain

or conjugated PPS-1 or saline.

PPS-1 booster s.c. abrogated the Pnc1-TT-induced GCs,

resulting in fewer mature PNA+ GCs than after saline booster

(Figure 2). In contrast, PPS-1 booster i.n. enhanced GC formation,

shown by higher mature PNA+ GC numbers in spleen (Figure 2)

compared with saline i.n.. Accordingly, higher number of mature

PNA+ GCs was found after PPS-1 booster i.n. than s.c. (P = 0.002).

PPS-1 booster s.c. also reduced unswitched IgM+ and switched

IgG+ follicles compared with saline booster s.c.. In mice that

received PPS-1 booster s.c., the PNA staining pattern in spleen

differed from that in other immunized mice, as GCs that looked

less mature were observed. Also, staining pattern of anti-IgG

differed, with less IgG+ cells in the marginal zone (MZ) and hardly

any in GCs (Figure 3). The ratio of PNA+ GCs to IgM+ follicles

was calculated for each spleen section and used as a marker for

Pnc1-TT-induced GCs. The mature GC/follicle ratio was lower

after PPS-1 than saline booster s.c., contrary to PPS-1 booster i.n..

Accordingly, the GC/follicle ratio was higher after i.n. than s.c.

PPS-1 booster (Figure 2). In contrast to PPS-1 booster s.c., a Pnc1-

TT booster resulted in a significant increase in PNA+ GCs and the

ratio of GCs/IgM+ follicles (Figure 2).

These results clearly demonstrate that booster with plain but not

conjugated PPS-1 s.c. abrogates the Pnc1-TT-induced GC

reaction which parallels with reduced frequency of PPS-1-specific

IgG+ AbSCs in spleen of mice primed with Pnc1-TT as neonates.

Long lasting reduction of PPS-1-specific IgG+ AbSCs
persisted in spleen and bone marrow after PPS-1 booster
s.c. in mice primed as neonates with Pnc1-TT

We assessed the long-term effect of PPS-1 booster on PPS-1-

and TT-specific IgG+ AbSCs in spleen and BM from 7 days to 6

weeks.

As before, the PPS-1 booster s.c. reduced the frequency of Pnc1-

TT-induced PPS-1-specific IgG+ AbSCs (P = 0.003) at day 7 in

spleen compared with saline, but not in BM where the frequency

tended to be higher (P = 0.090) (Figure 4). Twenty three days after

PPS-1 booster s.c. the frequency was still lower in spleen

(P,0.001) and also in BM (P,0.001) than after saline booster

s.c. (Figure 4). The reduction persisted at 39 day after PPS-1

booster both in spleen (P,0.001) and BM (P,0.001). These

Figure 4. PPS-1 booster depletes Pnc1-TT-induced memory cells in spleen preventing homing of PPS-1-specific AbSCs to BM. PPS-1-
specific (A–B) and TT-specific (D–E) IgG+ AbSCs, shown as number of spots (mean6SD) per 106 cells, in spleen (A and D) and bone marrow (B and E)
measured by ELISPOT, and PPS-1- (C) and TT-specific (F) IgG Abs (mean EU/ml6SD) in serum measured by ELISA, at day 7, 23 and 39 after booster
with saline (open squares), PPS-1+LT-K63 (filled squares) or unvaccinated controls (open circles). The results shown are from one of two independent
experiments (eight mice/group for each time point) showing comparable results.
doi:10.1371/journal.pone.0072588.g004
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results indicate that the abrogation of Pnc1-TT-induced GC

reaction by PPS-1 booster s.c., detected at day 7 in spleen,

paralyzed the output of PPS-1-specific IgG+ AbSCs from the GCs

and depleted the PPS-1-specific IgG+ AbSCs formed after Pnc1-

TT priming. This resulted in no homing of new AbSCs to the BM,

which was reflected in significantly lower IgG anti-PPS-1 levels in

serum at all time points (Figure 4). The enhanced induction of

PPS-1-specific IgG+ AbSCs in spleen after PPS-1 booster i.n.

compared with saline at day 7 was diminished at days 23 and 39,

and was comparable in BM of these two groups at days 7 and 23.

At day 39, however, the frequency of PPS-1-specific IgG+ AbSCs

in BM was lower after PPS-1 booster i.n. than saline i.n. (P = 0.03).

Furthermore, the avidity (Figure 5B) and the protective efficacy

(Figure 5C) of the anti-PPS-1 IgG Abs was lower after PPS-1

booster s.c. than saline, contrary to PPS-1 booster i.n. (Figure 5A).

The depletion of AbSC by the PPS-1 booster s.c. was restricted to

the Pnc1-TT-induced PPS-1-specific IgG+ AbSCs, as the frequen-

cy of TT-specific AbSCs was unaffected (Figure 4).

Our results demonstrate that a PPS-1 booster given s.c., but not

i.n., depleted the Pnc1-TT-induced PPS-1-specific memory cell

and AbSC pool in spleen and the reduction persisted until 6 weeks

after the booster. No homing of new PPS-1-specific long-lived

plasma cells to the BM was detected.

Depletion of Pnc1-TT-induced PPS-1 specific memory
cells by repeated PPS-1 boosters s.c. in mice primed as
neonates

We further investigated the effects of repeated (1, 2 or 3) PPS-1

boosters s.c. on Pnc1-TT induced PPS-1-specific memory cells in

Figure 5. PPS-1 booster abrogation of Pnc1-TT-induced GCs reduces levels, avidity and protective efficacy of PPS-1-specific IgG.
PPS-1-specific IgG levels (mean EU/ml6SD) in serum (A) and their avidity index (mean AI6SD) (B) measured by ELISA 22 days before and 7, 23 and 39
days after s.c. (left panels) or i.n. (right panels) booster with saline (open squares), PPS-1+LT-K63 (filled squares) in mice primed with Pnc1-TT as
neonates or unvaccinated controls (open circles). Six weeks after the booster the mice were challenged with live S. pneumoniae serotype 1 to assess
protection against bactermia and lung lung infection [26]. Pneumococcal colony forming units (CFU/ml) in blood (C, left graph) and lungs (C, right
graph) 24 h after challenge shown for each mouse (N = 8/group), the median for each group is indicated by a line. Statistical difference in bacteremia
or lung infection between vaccinated groups is indicated in the graphs. The results shown are from one of two independent experiments (eight mice/
group for each time point) showing comparable results.
doi:10.1371/journal.pone.0072588.g005
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Figure 6. A single PPS-1 booster s.c. is sufficient to completely deplete PPS-1-specific-memory established by neonatal Pnc1-TT-
priming. PPS-1-specific IgG+ AbSCs, shown as number of spots (mean6SD) per 106 cells, in spleen (A) and bone marrow (B) measured by ELISPOT,
and PPS-1-specific IgG Abs (mean EU/ml6SD) in serum (C) measured by ELISA, at day 7, 23 and 39 after mice receiving s.c. booster with saline, PPS-
1+LT-K63 or unvaccinated controls. Statistical difference between test groups and unvaccinated controls are indicated as; * P,0.05; ** P#0.001, and
the difference between vaccinated groups is stated in the graphs. The results are shown for one of two independent experiments (eight mice/group
for each time point), showing comparable results.
doi:10.1371/journal.pone.0072588.g006

Figure 7. Repeated plain PPS-1 boosters i.n. reduce PPS-1-specific long-lived plasma cell pool in the bone marrow. PPS-1-specific IgG+

AbSCs, shown as number of spots (mean6SD) per 106 cells, in spleen (A) and bone marrow (B) measured by ELISPOT, and PPS-1-IgG Abs (mean EU/
ml6SD) in serum (C) measured by ELISA, at day 7, 23 and 39 after mice receiving i.n. booster with saline, PPS-1+LT-K63 or unvaccinated controls.
Statistical difference between test groups and unvaccinated controls are indicated as; * P,0.05; ** P#0.001, and the difference between vaccinated
groups is stated in the graphs. The results are shown for one of two independent experiments (eight mice/group for each time point), showing
comparable results.
doi:10.1371/journal.pone.0072588.g007
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spleen and persistence of long-lived plasma cells in BM and PPS-1-

specific IgG+ Abs in serum.

As before, the Pnc1-TT induced PPS-1-specific serum IgG+ Abs

and IgG+ AbSCs were compromised in spleen, but not BM, 7 days

after the 1st PPS-1 booster s.c. (Figure 6). Two PPS-1 boosters (23

days after the 1st booster and 7 days after the 2nd booster) reduced

the frequency of PPS-1-specific IgG+ AbSCs both in spleen and

BM and serum IgG anti-PPS-1 levels. Three PPS-1 boosters (39

days after the 1st booster, 23 days after the 2nd booster and 7 days

after the 3rd booster) reduced the frequency of PPS-1-specific IgG+

AbSCs in spleen and BM and serum IgG anti-PPS-1 levels. There

were no differences in the frequency of PPS-1-specific IgG+ AbSCs

in spleen and BM between one, two or three PPS-1 boosters at

days 23 and 39, reflected in comparable serum IgG anti-PPS-1

levels (Figure 6). The detrimental effects of PPS-1 boosters were

not observed for Abs or AbSC specific for TT carrier of Pnc1-TT

(Figure S2).

These results demonstrate that a single PPS-1 booster s.c. is

sufficient to completely deplete the PPS-1-specific memory pool

established by Pnc1-TT priming of neonatal mice.

Repeated i.n. PPS-1 boosters reduce the PPS-1-specific
long-lived plasma cell pool in the bone marrow

Since one i.n. PPS-1 booster did not compromise the Pnc1-TT-

induced memory, contrary to the PPS booster s.c., we assessed the

effects of repeated PPS boosters i.n. in mice primed with Pnc1-TT

as neonates. As previously, the frequency of PPS-1-specific IgG+

AbSCs in spleen was higher after PPS-1 compared with saline

booster i.n. 7 days after the 1st booster, but AbSCs frequency in

BM and serum IgG anti-PPS levels were comparable (Figure 7). At

day 23 (7 days after the 2nd booster), two PPS-1 boosters i.n.

yielded higher frequency of PPS-1-specific IgG+ AbSCs in spleen

than saline, but lower frequency in BM. Serum IgG anti-PPS

levels were comparable. Thirty nine days after the 1st booster (7

days after the 3rd booster), two or three PPS i.n. boosters resulted

in comparable frequencies of PPS-1-specific IgG+ AbSCs in the

spleen and serum IgG anti-PPS-1 levels as saline administration.

However, in the BM the frequency of PPS-1-specific IgG+ AbSCs

was reduced (Figure 7), whereas TT-specific IgG+ AbSCs were

comparable in all immunized groups (Figure S3).

These results clearly demonstrate that repeated i.n. PPS-1

boosters compromise the persistence of the PPS-1-specific long-

lived plasma cell pool in BM, although less profoundly than s.c.

PPS-1 boosters.

Discussion

This study demonstrates that a single dose of plain pneumo-

coccal polysaccharide s.c. is sufficient to completely deplete the

PPS-1-specific memory pool established by pneumococcal conju-

gate priming in neonatal mice.

The inability of CD21+ MZ B cells to localize in the MZ before

2 years of age in humans [32] and 3–4 week in mice [33] as well as

low serum C3 levels [34] are considered the major reasons for the

lack of PS responsiveness during childhood. However, by

conjugating the PS to a protein carrier, the C3 and MZ B cell

dependency for the induction of PS-specific IgG response is

overcome [35] by T cell help, leading to TD GC induction,

production of short- and long-lived plasma cells and memory B

cells [36]. This is characterized by immunoglobulin class-switching

and extensive somatic hypermutations leading to enhanced Ab

affinity for its antigen [37] and a rapid response to re-exposure to

the Ag, as accomplished when neonatal mice are primed with

Pnc1-TT+LT-K63 [27,28]. In contrast, plain PS activates B cells

through cross-linking of membrane Ig and complement receptor 2

(CR2 or CD21) by C3d-PS complexes [38] limiting the need for

direct T cell help. Initiation of Ab response to plain PS depends

upon trapping by blood dendritic cells [39] or splenic marginal

zone SIGN-R1+ MARCO+ macrophages [40] that transfer the PS

to MZ B cells that rapidly produce protective Abs [41]. Clinical

studies have shown a booster response to PPV in toddlers primed

with PCV during infancy [7,42,43,44], although the Abs had less

functional activity than after PCV booster, both in terms of avidity

[14,43,45] and opsonic activity [7,14,46,47]. Accordingly, an

increased risk of acute lower respiratory infections after PPV

booster at 18 months of age was detected in Australian Indigenous

children previously primed with 3 doses of PCV during infancy

[48]. In our study, PPS-1 did not elicit an anamnestic response, as

the frequency of active GCs, PPS-1 specific IgG+ AbSCs, IgG Ab

levels, avidity and protective efficacy were lower after PPS-1

booster s.c. than saline and Pnc1-TT [26,27,28]. The frequency of

active GCs and AbSCs, as well as Ab levels, were also significantly

higher after Pnc1-TT booster than PPS-1 and saline boosters, as

previously shown for Ab levels and their long term persistence

[27], further supporting that plain but not conjugated PS booster

causes hyporesponsiveness by abrogating the GC reaction and

depleting the PS-specific memory cells. Some PSs have zwitter-

ionic charged motifs, including PPS of serotype 1, and may

activate CD4+ T cells after being processed and presented by

MHC class II [31,49]. However, plain PPS-1 immunization w/wo

LT-K63 adjuvant induces no IgG Abs in our neonatal murine

model [26]. In agreement with those results, a recent study in

humans demonstrated that plain PPS-1 does not elicit memory B

cell formation, similar to other PSs [50]. Furthermore, we have

shown that a booster s.c. with the non-zwitterionic PPS-19F causes

hyporesponsiveness in mice primed with a monovalent pneumo-

coccal conjugate, Pnc19F-TT, reflected in reduced Ab levels

compared with a saline administration. Thus, hyporesponsiveness

can be induced by both zwitterionic and non-zwitterionic PPS in

our neonatal murine model. Furthermore, hyporesponsiveness was

induced by PPS-1 booster over a broad dose range and time

intervals from priming. The detrimental effect of PPS-1 booster

s.c. on the immune response previously induced by Pnc1-TT was

reflected in abrogated GC reaction resulting in negligible output of

PPS-1-specific plasma cells in the spleen. At that time point, 23

days after Pnc1-TT+LT-K63 priming, the GC reaction in mice

that received saline booster by either route is already declining, as

the peak of GCs reaction is around day 14 after TT and alum

immunization of neonatal mice [51]. Thus, the reduced total

number of mature GCs after PPS-1 booster s.c. compared with

saline booster s.c. is a strong indicator of the detrimental effects of

PPS on the GC reaction and more immature looking GCs

appeared after PPS booster s.c.. Accordingly, in humans PPV was

recently reported to deplete peripheral serotype-specific memory B

cells and the B1b cells in adults 50–70 years of age [52]. We have

shown in our neonatal murine model that meningococcal

serogroup C polysaccharide (MenC-PS) also induces hyporespon-

siveness in mice primed as neonates with a meningococcal C

conjugate. The MenC-PS booster induced increased apoptosis of

MenC-PS-specific B cells within 8–12 hours, mostly of switched

IgG+ memory cells [53]. Interestingly, the Pnc1-TT-induced PPS-

1-specific long-lived plasma cells that had already homed to their

survival niches in the BM were not affected by the PPS-1 booster

s.c. and no significant difference was detected in their frequency 7

to 39 days after the booster. But, contrary to mice that received

saline as a booster, the frequency PPS-1-specific IgG+ AbSCs did

not increase, which could be due to abrogation of the GC reaction

resulting in no homing of new PPS-1-specific long-lived plasma
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cells to the BM. Importantly, one dose of PPS-1 booster s.c. was

sufficient to deplete the Pnc1-TT-induced memory and AbSCs as

each subsequent PPS-1 boosters did not further reduce the

frequency of PPS-1-specific IgG+ AbSCs in either spleen or BM.

Furthermore, we have demonstrated previously that one dose of

PPS-1 booster s.c. induces long-lasting abrogation of anamnestic

Ab response [27].

Most pathogens enter the body via mucous membranes and

vaccines, including conjugate vaccines, administered through

mucosal routes can more readily induce mature immune responses

in neonatal mice than vaccines administered through systemic

routes [54]. However, limited data are available for human

infants. Accordingly, i.n. administration of PPS-1 did not abrogate

the Pnc1-TT-induced memory, as the frequency of PPS-1-specific

IgG+ AbSCs in the spleen 7 days after the booster was comparable

or higher than in mice that received saline. However, at days 23

and 39 the frequency of PPS-1-specific IgG+ AbSCs in the BM was

lower in mice that had received PPS-1 i.n. twice or three times

than in mice that received saline. Thus, repeated i.n. PPS-1

boosters compromised the long-lived PPS-1-specific plasma cell

pool in the BM. Pneumococcal colonization before or at the time

of the first infant dose of PCV [15,16,17] and previous invasive

pneumococcal disease have been shown to impair the serotype-

specific Ab responses after previous and to subsequent injections of

PCV [19] or PPV [18]. In agreement with the human results we

have recently shown that PPV priming of neonatal mice s.c.

depletes naı̈ve PPS-specific B cells and impairs the response to

subsequent PCV immunization, although the effect varied

between serotypes [55]. In the current study we showed that not

only parenteral PPS booster, but also repeated exposure to PS at

mucosal level, induced hyporesponiveness, although to a lesser

extent. In a study using NP-Ficoll as a model TI-2 vaccine, PS-

induced immunosuppression upon recall exposure was due to PS-

specific IgG Abs [56], also inhibiting stimulation of B cells, but

only if added to the culture within the first 24 h [57], suggesting

that one potential mechanism of PS-induced hyporesponsivess

could be Ag-Ab complexes mediated. Thus, the difference

observed between the routes could be due to several factors,

including different distribution of cells specialized for antigen

uptake, different cell populations at the mucosal inductive sites

[58], earlier maturity of mucosal than systemic lymphoid tissues

[59], differential organogenesis of lymphoid organs in the neonatal

mice [60] and different amount of antigen that reaches the lymph

nodes and spleen. We have seen that PPS booster administration

intraperitoneally (i.p.) only induced hyporesponsiveness in mice

primed as neonates with Pnc1-TT+LT-K63 by either the s.c. or

i.p. routes, but not the i.n. route (unpublished data). The cellular

mechanisms responsible for PS-induced hyporesponsiveness are

not fully elucidated. Our results suggest that PS-induced depletion

of PS-specific B cells and apoptosis, primarily of the memory B cell

phenotype, is at least one of the mechanisms [53]. PS are large

molecules composed of repetitive epitopes, highly resistance to

degradation [61] and can persist in vivo for a long time [62,63,64].

It has been speculated that the existence of a memory B cell pool

capable of responding to such persistent Ag needs a suppressive

mechanism to prevent their continuous reactivation, overproduc-

tion of Abs and that the B cell unresponsiveness elicited by

nasopharyngeal carriage, IPD or PPV booster could be a

preventative mechanism [15,19]. Further studies are needed to

dissect the exact cellular and molecular mechanisms behind PS-

induced hyporesponsiveness. Our results and those of others

demonstrate that polysaccharides deplete memory cells and long-

lived plasma cells thereby causing hyporesponsiveness in the most

susceptible groups targeted by vaccination and warrant reevalu-

ation of all vaccination schedules including polysaccharides.

Supporting Information

Figure S1 PPS-1 booster, irrespective of dosage, inter-
val between immunizations and zwitterionic or non-
zwitterionic properties, induces PS-hyporesponsive-
ness. PPS-1- and -19F-specific IgG levels (mean EU/ml6SD)

in serum measured by ELISA, weekly from week 2 to 7 after

immunization of neonatal mice with Pnc1-TT+LT-K63 s.c. (A

and B) or Pnc19F-TT+LT-K63 s.c. (C) that received a booster

with saline (open squares; A, B and C), 0.5 mg of PPS-1+5.0 mg

LT-K63 (filled triangles; B), 1.0 mg of PPS-1+5.0 mg LT-K63

(open triangles; B), 5.0 mg of PPS-1+5.0 mg LT-K63 (filled squares;

A and B) or 5.0 mg of PPS-19F+5.0 mg LT-K63 (filled squares; C),

0.5 mg of Pnc1-TT (filled circles; A and B) or Pnc19F-TT+5.0 mg

LT-K63 (filled circles; C) 16 days later (A left panel, B and C) or 4

weeks later (A right panel). Time of immunization is indicated by

arrows.

(TIF)

Figure S2 The PPS-1 boosters s.c. had no detrimental
effects on the frequency of carrier protein-specific
AbSCs in spleen and bone marrow. TT-specific IgG+

AbSCs, shown as number of spots (mean6SD) per 106 cells, in

spleen (A) and bone marrow (B) measured by ELISPOT, TT-IgG

Abs (mean EU/ml6SD) in serum (C) measured by ELISA, at day

7, 23 and 39 after s.c. booster with saline, PPS-1+LT-K63 or

unvaccinated control. Statistical difference between test groups

and unvaccinated controls is indicated; * P,0.05; ** P#0.001.

The results shown are from one of two independent experiments

(eight mice/group for each time point) showing comparable

results.

(TIF)

Figure S3 The frequency of TT-specific AbSCs in spleen
and bone marrow was not affected by the PPS-1 boosters
i.n.. TT-specific IgG+ AbSCs, shown as number of spots

(mean6SD) per 106 cells, in spleen (A) and bone marrow (B)

measured by ELISPOT, TT-IgG Abs (mean EU/ml6SD) in

serum (C) measured by ELISA, at day 7, 23 and 39 after i.n.

booster with saline, PPS-1+LT-K63 or unvaccinated control.

Statistical difference between test groups and controls is indicated;

* P,0.05; ** P#0.001.The results shown are from one of two

independent experiments (eight mice/group for each time point)

showing comparable results.

(TIF)
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