81 research outputs found
Information-Theoretic Aspects of Control in a Bio-Hybrid Robot Device
Information processing in natural systems radically differs from current information technology. This difference is particularly apparent in the area of robotics, where both organisms and artificial devices face a similar challenge: the need to act in real time in a complex environment and to do so with computing resources severely limited by their size and power consumption. The formidable gap between artificial and natural systems in terms of information processing capability motivates research into the biological modes of information processing. Such undertakings, however, are hampered by the fact that nature directly exploits the manifold physical characteristics of its computing substrates, while available theoretical tools in general ignore the underlying implementation. Here we sketch the concept of bounded computability in an attempt towards reconciling the information-theoretic perspective with the need to take the material basis of information processing into account. We do so in the context of Physarum polycephalum as a naturally evolved information processor and the use of this organism as an integral component of a robot controller
Differential gene transfers and gene duplications in primary and secondary endosymbioses
BACKGROUND: Most genes introduced into phototrophic eukaryotes during the process of endosymbiosis are either lost or relocated into the host nuclear genome. In contrast, groEL homologues are found in different genome compartments among phototrophic eukaryotes. Comparative sequence analyses of recently available genome data, have allowed us to reconstruct the evolutionary history of these genes and propose a hypothesis that explains the unusual genome distribution of groEL homologues. RESULTS: Our analyses indicate that while two distinct groEL genes were introduced into eukaryotes by a progenitor of plastids, these particular homologues have not been maintained in all evolutionary lineages. This is of significant interest, because two chaperone proteins always co-occur in oxygenic photosynthetic organisms. We infer strikingly different lineage specific processes of evolution involving deletion, duplication and targeting of groEL proteins. CONCLUSION: The requirement of two groEL homologues for chaperon function in phototrophs has provided a constraint that has shaped convergent evolutionary scenarios in divergent evolutionary lineages. GroEL provides a general evolutionary model for studying gene transfers and convergent evolutionary processes among eukaryotic lineages
Microalgae as bioreactors for bioplastic production
<p>Abstract</p> <p>Background</p> <p>Poly-3-hydroxybutyrate (PHB) is a polyester with thermoplastic properties that is naturally occurring and produced by such bacteria as <it>Ralstonia eutropha </it>H16 and <it>Bacillus megaterium</it>. In contrast to currently utilized plastics and most synthetic polymers, PHB is biodegradable, and its production is not dependent on fossil resources making this bioplastic interesting for various industrial applications.</p> <p>Results</p> <p>In this study, we report on introducing the bacterial PHB pathway of <it>R. eutropha </it>H16 into the diatom <it>Phaeodactylum tricornutum</it>, thereby demonstrating for the first time that PHB production is feasible in a microalgal system. Expression of the bacterial enzymes was sufficient to result in PHB levels of up to 10.6% of algal dry weight. The bioplastic accumulated in granule-like structures in the cytosol of the cells, as shown by light and electron microscopy.</p> <p>Conclusions</p> <p>Our studies demonstrate the great potential of microalgae like the diatom <it>P. tricornutum </it>to serve as solar-powered expression factories and reveal great advantages compared to plant based production systems.</p
ERAD Components in Organisms with Complex Red Plastids Suggest Recruitment of a Preexisting Protein Transport Pathway for the Periplastid Membrane
The plastids of cryptophytes, haptophytes, and heterokontophytes (stramenopiles) (together once known as chromists) are surrounded by four membranes, reflecting the origin of these plastids through secondary endosymbiosis. They share this trait with apicomplexans, which are alveolates, the plastids of which have been suggested to stem from the same secondary symbiotic event and therefore form a phylogenetic clade, the chromalveolates. The chromists are quantitatively the most important eukaryotic contributors to primary production in marine ecosystems. The mechanisms of protein import across their four plastid membranes are still poorly understood. Components of an endoplasmic reticulum-associated degradation (ERAD) machinery in cryptophytes, partially encoded by the reduced genome of the secondary symbiont (the nucleomorph), are implicated in protein transport across the second outermost plastid membrane. Here, we show that the haptophyte Emiliania huxleyi, like cryptophytes, stramenopiles, and apicomplexans, possesses a nuclear-encoded symbiont-specific ERAD machinery (SELMA, symbiont-specific ERAD-like machinery) in addition to the host ERAD system, with targeting signals that are able to direct green fluorescent protein or yellow fluorescent protein to the predicted cellular localization in transformed cells of the stramenopile Phaeodactylum tricornutum. Phylogenies of the duplicated ERAD factors reveal that all SELMA components trace back to a red algal origin. In contrast, the host copies of cryptophytes and haptophytes associate with the green lineage to the exclusion of stramenopiles and alveolates. Although all chromalveolates with four membrane-bound plastids possess the SELMA system, this has apparently not arisen in a single endosymbiotic event. Thus, our data do not support the chromalveolate hypothesis
Affine Constellations Without Mutually Unbiased Counterparts
It has been conjectured that a complete set of mutually unbiased bases in a
space of dimension d exists if and only if there is an affine plane of order d.
We introduce affine constellations and compare their existence properties with
those of mutually unbiased constellations, mostly in dimension six. The
observed discrepancies make a deeper relation between the two existence
problems unlikely.Comment: 8 page
A cancer stem cell-like phenotype is associated with miR-10b expression in aggressive squamous cell carcinomas
Background
Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined.
Methods
MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets.
Results
Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2.
Conclusion
The discovery that miR-10b mediates an aspect of cancer stemness â that of enhanced tumor cell adhesion, known to facilitate metastatic colonization â provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA
In Silico and In Vivo Investigations of Proteins of a Minimized Eukaryotic Cytoplasm
Algae with secondary plastids such as diatoms maintain two different eukaryotic cytoplasms. One of them, the so-called periplastidal compartment (PPC), is the naturally minimized cytoplasm of a eukaryotic endosymbiont. In order to investigate the protein composition of the PPC of diatoms, we applied knowledge of the targeting signals of PPC-directed proteins in searches of the genome data for proteins acting in the PPC and proved their in vivo localization via expressing green fluorescent protein (GFP) fusions. Our investigation increased the knowledge of the protein content of the PPC approximately 3-fold and thereby indicated that this narrow compartment was functionally reduced to some important cellular functions with nearly no housekeeping biochemical pathways
- âŚ