21 research outputs found

    Demagnetization Studies on Permanent Magnets : Comparing FEM Simulations with Experiments

    No full text
    In a world where money often is the main controlling factor, everything that can be tends to be more and more optimized. Regarding electrical machines, developers have always had the goal to make them better. The latest trend is to make machines as efficient as possible, which calls for accurate simulation models where different designs can be tested and evaluated. The finite element method is probably the most popular approach since it makes it possible to, in an easy and accurate way, get numerical solutions to a variety of physics problems with complex geometries and non-linear materials. This licentiate thesis includes two different projects in which finite element methods have had a central roll. In the first project, the goal was to develop a simulation model to be able to predict demagnetization of permanent magnets. It is of great importance to be able to predict if a permanent magnet will be demagnetized or not in a certain situation. In the worst case, the permanent magnets will be completely destroyed and the machine will be completely useless. However, it is more probable that the permanent magnets will not be completely destroyed and that the machine still will be functional but not as good as before. In a time where money is more important than ever, the utilization has to be as high as possible. In this study the demagnetization risk for different rotor geometries in a 12 kW direct driven permanent magnet synchronous generator was studied with a proprietary finite element method simulation model. The demagnetization study of the different rotor geometries and magnet grades showed that here is no risk for the permanent magnets in the rotor as it is designed today to be demagnetized. The project also included experimental verification of the simulation model. The simulation model was compared with experiments and the results showed good agreement. The second project treated the redesign of the rotor in the generator previously mentioned. The goal was to redesign the surface mounted NdFeB rotor to use a field concentrating design with ferrite permanent magnets instead. The motivation was that the price on NdFeB magnets has fluctuated a lot the last few years as well as to see if it was physically possible to fit a ferrite rotor in the same space as the NdFeB rotor. A new rotor design with ferrite permanent magnets was presented together with an electromagnetic and a mechanical design

    Investigation of Permanent Magnet Demagnetization in Synchronous Machines during Multiple Short-Circuit Fault Conditions

    No full text
    Faults in electrical machines can vary in severity and affect different parts of the machine. This study focuses on various kinds of short-circuits on the terminal side of a generic 20 kW surface mounted permanent magnet synchronous generator and how successive faults affect the performance of the machine. The study was conducted with the commercially available finite element method software COMSOL Multiphysics ® , and two time-dependent models for demagnetization of permanent magnets were compared, one using only internal models and the other using a proprietary external function. The study is simulation based and the two models were compared to a previously experimentally verified stationary model. Results showed that the power output decreased by more than 30% after five successive faults. In addition, the no-load voltage had become unsymmetrical, which was explained by the uneven demagnetization of the permanent magnets. The permanent magnet with the lowest reduction in average remanence was decreased by 0.8%, while the highest average reduction was 23.8% in another permanent magnet. The internal simulation model was about four times faster than the external model, but slightly overestimated the demagnetization

    Demagnetization Studies on Permanent Magnets : Comparing FEM Simulations with Experiments

    No full text
    In a world where money often is the main controlling factor, everything that can be tends to be more and more optimized. Regarding electrical machines, developers have always had the goal to make them better. The latest trend is to make machines as efficient as possible, which calls for accurate simulation models where different designs can be tested and evaluated. The finite element method is probably the most popular approach since it makes it possible to, in an easy and accurate way, get numerical solutions to a variety of physics problems with complex geometries and non-linear materials. This licentiate thesis includes two different projects in which finite element methods have had a central roll. In the first project, the goal was to develop a simulation model to be able to predict demagnetization of permanent magnets. It is of great importance to be able to predict if a permanent magnet will be demagnetized or not in a certain situation. In the worst case, the permanent magnets will be completely destroyed and the machine will be completely useless. However, it is more probable that the permanent magnets will not be completely destroyed and that the machine still will be functional but not as good as before. In a time where money is more important than ever, the utilization has to be as high as possible. In this study the demagnetization risk for different rotor geometries in a 12 kW direct driven permanent magnet synchronous generator was studied with a proprietary finite element method simulation model. The demagnetization study of the different rotor geometries and magnet grades showed that here is no risk for the permanent magnets in the rotor as it is designed today to be demagnetized. The project also included experimental verification of the simulation model. The simulation model was compared with experiments and the results showed good agreement. The second project treated the redesign of the rotor in the generator previously mentioned. The goal was to redesign the surface mounted NdFeB rotor to use a field concentrating design with ferrite permanent magnets instead. The motivation was that the price on NdFeB magnets has fluctuated a lot the last few years as well as to see if it was physically possible to fit a ferrite rotor in the same space as the NdFeB rotor. A new rotor design with ferrite permanent magnets was presented together with an electromagnetic and a mechanical design

    Demagnetization and Fault Simulations of Permanent Magnet Generators

    No full text
    Permanent magnets are today widely used in electrical machines of all sorts. With their increase in popularity, the amount of research has increased as well. In the wind power project at Uppsala University permanent magnet synchronous generators have been studied for over a decade. However, a tool for studying demagnetization has not been available. This Ph.D. thesis covers the development of a simulation model in a commercial finite element method software capable of studying demagnetization. Further, the model is also capable of simulating the connected electrical circuit of the generator. The simulation model has continuously been developed throughout the project. The simulation model showed good agreement compared to experiment, see paper IV, and has in paper III and V successfully been utilized in case studies. The main focus of these case studies has been different types of short-circuit faults in the electrical system of the generator, at normal or at an elevated temperature. Paper I includes a case study with the latest version of the model capable of handling multiple short-circuits events, which was not possible in earlier versions of the simulation model. The influence of the electrical system on the working point ripple of the permanent magnets was evaluated in paper II. In paper III and VI, an evaluation study of the possibility of creating a generator with an interchangeable rotor is presented.  A Neodymium-Iron-Boron (Nd-Fe-B) rotor was exchanged for a ferrite rotor with the electrical properties almost maintained

    Demagnetization Studies on Permanent Magnets : Comparing FEM Simulations with Experiments

    No full text
    In a world where money often is the main controlling factor, everything that can be tends to be more and more optimized. Regarding electrical machines, developers have always had the goal to make them better. The latest trend is to make machines as efficient as possible, which calls for accurate simulation models where different designs can be tested and evaluated. The finite element method is probably the most popular approach since it makes it possible to, in an easy and accurate way, get numerical solutions to a variety of physics problems with complex geometries and non-linear materials. This licentiate thesis includes two different projects in which finite element methods have had a central roll. In the first project, the goal was to develop a simulation model to be able to predict demagnetization of permanent magnets. It is of great importance to be able to predict if a permanent magnet will be demagnetized or not in a certain situation. In the worst case, the permanent magnets will be completely destroyed and the machine will be completely useless. However, it is more probable that the permanent magnets will not be completely destroyed and that the machine still will be functional but not as good as before. In a time where money is more important than ever, the utilization has to be as high as possible. In this study the demagnetization risk for different rotor geometries in a 12 kW direct driven permanent magnet synchronous generator was studied with a proprietary finite element method simulation model. The demagnetization study of the different rotor geometries and magnet grades showed that here is no risk for the permanent magnets in the rotor as it is designed today to be demagnetized. The project also included experimental verification of the simulation model. The simulation model was compared with experiments and the results showed good agreement. The second project treated the redesign of the rotor in the generator previously mentioned. The goal was to redesign the surface mounted NdFeB rotor to use a field concentrating design with ferrite permanent magnets instead. The motivation was that the price on NdFeB magnets has fluctuated a lot the last few years as well as to see if it was physically possible to fit a ferrite rotor in the same space as the NdFeB rotor. A new rotor design with ferrite permanent magnets was presented together with an electromagnetic and a mechanical design

    Experimental Verification of a Simulation Model for Partial Demagnetization of Permanent Magnets

    No full text
    This article aims to verify a FEM simulation model for demagnetization of permanent magnets. The model is designed to determine the remaining magnetization within the permanent magnet after it has been exposed to high demagnetizing fields and/or temperature. An experimental setup was built and a permanent of SmCo type was experimentally tested and the results have been compared to simulation results. The results show a good agreement between results from simulationand results from experiments. A maximal deviation of 3 % of the simulation results in relation to the experimental results were achieved for most part of the magnet. During the calibration of the simulation model it was found that the coercivity had to be significantly lowered compared to the permanent magnets reference value to match simulation results to the experimental results

    Investigation of Permanent Magnet Demagnetization in Synchronous Machines During Multiple Short-Circuit Fault Conditions

    No full text
    Faults in electrical machines can vary in severity and affect different parts of the machine. This study focuses on various kinds of short-circuits on the terminal side of a generic 20 kW surface mounted permanent magnet synchronous generator and how successive faults affect the performance of the machine. The study was conducted with the commercially available finite element method software COMSOL Multiphysics ®" role="presentation">® , and two time-dependent models for demagnetization of permanent magnets were compared, one using only internal models and the other using a proprietary external function. The study is simulation based and the two models were compared to a previously experimentally verified stationary model. Results showed that the power output decreased by more than 30% after five successive faults. In addition, the no-load voltage had become unsymmetrical, which was explained by the uneven demagnetization of the permanent magnets. The permanent magnet with the lowest reduction in average remanence was decreased by 0.8%, while the highest average reduction was 23.8% in another permanent magnet. The internal simulation model was about four times faster than the external model, but slightly overestimated the demagnetization

    Study of demagnetization risk for a 12 kW direct driven permanent magnet synchronous generator for wind power

    No full text
    One of the main aspects when designing a permanent magnet (PM) generator is to choose suitable PMs, both in terms of achieving the required flux in the generator but also of withstanding high demagnetizing fields, that is, having sufficiently high coercivity. If the coercivity is too low, the magnets are at risk of demagnetizing, fully or partially, at the event of a short circuit and/or an increase in temperature. This study aims to determine the risk of demagnetization for a 12 kW direct driven permanent magnet synchronous generator. Furthermore, as the prices on PMs have increased drastically the last few years the possibility to use smaller and/or cheaper PMs of different grades has been investigated. A new proprietary finite element method (FEM) model has been developed, which is also presented. The study is based on simulations from this FEM model and is focused on NdFeB magnets. Results show that the reference magnet can withstand a two-phase short circuit at both the temperatures tested and in both geometries. The use of cheaper magnets, smaller air gap and in the event of a two-phase short circuit often results in partial irreversible demagnetization. However, magnets with lower coercivity are easier demagnetized
    corecore