57 research outputs found

    Intercomparison of detection and quantification methods for methane emissions from the natural gas distribution network in Hamburg, Germany

    Get PDF
    In August and September 2020, three different measurement methods for quantifying methane (CH4) emission from leaks in urban gas distribution networks were applied and compared in Hamburg, Germany: the “mobile”, “tracer release” and “suction” methods. The mobile and tracer release methods determine emission rates to the atmosphere from measurements of CH4 mole fractions in the ambient air, and the tracer release method also includes measurement of a gaseous tracer. The suction method determines emission rates by pumping air out of the ground using soil probes that are placed above the suspected leak location. The quantitative intercomparison of the emission rates from the three methods at a small number of locations is challenging because of limitations of the different methods at different types of leak locations. The mobile method was designed to rapidly quantify the average or total emission rate of many gas leaks in a city, but it yields a large emission rate uncertainty for individual leak locations. Emission rates determined for individual leak locations with the tracer release technique are more precise because the simultaneous measurement of the tracer released at a known rate at the emission source eliminates many of the uncertainties encountered with the mobile method. Nevertheless, care must be taken to properly collocate the tracer release and the leak emission points to avoid biases in emission rate estimates. The suction method could not be completed or applied at locations with widespread subsurface CH4 accumulation, or due to safety measures, and this sampling bias may be associated with a bias towards leak locations with low emission rates. The leak locations where the suction method could not be applied were the biggest emitters as confirmed by the emission rate quantifications using mobile and tracer methods and an engineering method based on leak’s diameter, pipeline overpressure and depth at which the pipeline is buried. The corresponding sampling bias for the suction technique led to a low bias in derived emission rates in this study. It is important that future studies using the suction method account for any leaks not quantifiable with this method in order to avoid biases, especially when used to inform emission inventories

    Upward revision of global fossil fuel methane emissions based on isotope database

    Get PDF
    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.Published88-916A. Geochimica per l'ambienteJCR Journa

    Quantification of methane emissions in Hamburg using a network of FTIR spectrometers and an inverse modeling approach

    Get PDF
    Methane (CH4) is a potent greenhouse gas, and anthropogenic CH4 emissions contribute significantly to global warming. In this study, the CH4 emissions of the second most populated city in Germany, Hamburg, were quantified with measurements from four solar-viewing Fourier transform infrared (FTIR) spectrometers, mobile in situ measurements, and an inversion framework. For source type attribution, an isotope ratio mass spectrometer was deployed in the city. The urban district hosts an extensive industrial and port area in the south as well as a large conglomerate of residential areas north of the Elbe River. For emission modeling, the TNO GHGco (Netherlands Organisation for Applied Scientific Research greenhouse gas and co-emitted species emission database) inventory was used as a prior for the inversion. In order to improve the inventory, two approaches were followed: (1) the addition of a large natural CH4 source, the Elbe River, which was previously not included in the inventory, and (2) mobile measurements were carried out to update the spatial distribution of emissions in the TNO GHGco gridded inventory and derive two updated versions of the inventory. The addition of the river emissions improved model performance, whereas the correction of the spatial distribution with mobile measurements did not have a significant effect on the total emission estimates for the campaign period. A comparison of the updated inventories with emission estimates from a Gaussian plume model (GPM) showed that the updated versions of the inventory match the GPM emissions estimates well in several cases, revealing the potential of mobile measurements to update the spatial distribution of emission inventories. The mobile measurement survey also revealed a large and, at the time of the study, unknown point source of thermogenic origin with a magnitude of 7.9 ± 5.3 kg h-1 located in a refinery. The isotopic measurements show strong indications that there is a large biogenic CH4 source in Hamburg that produced repeated enhancements of over 1 ppm which correlated with the rising tide of the river estuary. The CH4 emissions (anthropogenic and natural) of the city of Hamburg were quantified as 1600 ± 920 kg h-1, 900 ± 510 kg h-1 of which is of anthropogenic origin. This study reveals that mobile street-level measurements may miss the majority of total methane emissions, potentially due to sources located within buildings, including stoves and boilers operating on natural gas. Similarly, the CH4 enhancements recorded during the mobile survey from large-area sources, such as the Alster lakes, were too small to generate GPM emission estimates with confidence, but they could nevertheless influence the emission estimates based on total column measurements

    Advancing Scientific Understanding of the Global Methane Budget in Support of the Paris Agreement

    Get PDF
    The 2015 Paris Agreement of the United Nations Framework Convention on Climate Change aims to keep global average temperature increases well below 2 °C of preindustrial levels in the Year 2100. Vital to its success is achieving a decrease in the abundance of atmospheric methane (CH4), the second most important anthropogenic greenhouse gas. If this reduction is to be achieved, individual nations must make and meet reduction goals in their nationally determined contributions, with regular and independently veriïŹable global stock taking. Targets for the Paris Agreement have been set, and now the capability must follow to determine whether CH4 reductions are actually occurring. At present, however, there are signiïŹcant limitations in the ability of scientists to quantify CH4 emissions accurately at global and national scales and to diagnose what mechanisms have altered trends in atmospheric mole fractions in the past decades. For example, in 2007, mole fractions suddenly started rising globally after a decade of almost no growth. More than a decade later, scientists are still debating the mechanisms behind this increase. This study reviews the main approaches and limitations in our current capability to diagnose the drivers of changes in atmospheric CH4 and, crucially, proposes ways to improve this capability in the coming decade. Recommendations include the following: (i) improvements to process‐based models of the main sectors of CH4 emissions—proposed developments call for the expansion of tropical wetland ïŹ‚ux measurements, bridging remote sensing products for improved measurement of wetland area and dynamics, expanding measurements of fossil fuel emissions at the facility and regional levels, expanding country‐ speciïŹc data on the composition of waste sent to landïŹll and the types of wastewater treatment systems implemented, characterizing and representing temporal proïŹles of crop growing seasons, implementing parameters related to ruminant emissions such as animal feed, and improving the detection of small ïŹres associated with agriculture and deforestation; (ii) improvements to measurements of CH4 mole fraction and its isotopic variations—developments include greater vertical proïŹling at background sites, expanding networks of dense urban measurements with a greater focus on relatively poor countries, improving the precision of isotopic ratio measurements of 13CH4, CH3D, 14CH4, and clumped isotopes, creating isotopic reference materials for international‐scale development, and expanding spatial and temporal characterization of isotopic source signatures; and (iii) improvements to inverse modeling systems to derive emissions from atmospheric measurements—advances are proposed in the areas of hydroxyl radical quantiïŹcation, in systematic uncertainty quantiïŹcation through validation of chemical transport models, in the use of source tracers for estimating sector‐level emissions, and in the development of time and spaceresolved national inventories. These and other recommendations are proposed for the major areas of CH4 science with the aim of improving capability in the coming decade to quantify atmospheric CH4 budgets on the scales necessary for the success of climate policies. Plain Language Summary Methane is the second largest contributor to climate warming from human activities since preindustrial times. Reducing human‐made emissions by half is a major component of the 2015 Paris Agreement target to keep global temperature increases well below 2 °C. In parallel to the methane emission reductions pledged by individual nations, new capabilities are needed to determine independently whether these reductions are actually occurring and whether methane concentrations in the atmosphere are changing for reasons that are clearly understood. At present signiïŹcant challenges limit the ability of scientists to identify the mechanisms causing changes in atmospheric methane. This study reviews current and emerging tools in methane science and proposes major advances needed in the coming decade to achieve this crucial capability. We recommend further developing the models that simulate the processes behind methane emissions, improving atmospheric measurements of methane and its major carbon and hydrogen isotopes, and advancing abilities to infer the rates of methane being emitted and removed from the atmosphere from these measurements. The improvements described here will play a major role in assessing emissions commitments as more cities, states, and countries report methane emission inventories and commit to speciïŹc emission reduction targets. </div

    Aircraft-based mass balance estimate of methane emissions from offshore gas facilities in the Southern North Sea

    Get PDF
    Atmospheric methane (CH4) concentrations have more than doubled since the beginning of the industrial age, making CH4 the second most important anthropogenic greenhouse gas after carbon dioxide (CO2). The oil and gas sector represent one of the major anthropogenic CH4 emitters as it is estimated to account for 22 % of global anthropogenic CH4 emissions. An airborne field campaign was conducted in April&ndash;May 2019 to study CH4 emissions from offshore gas facilities in the Southern North Sea with the aim to derive emission estimates using a top-down (measurement-led) approach. We present CH4 fluxes for six UK and five Dutch offshore platforms/platform complexes using the well-established mass balance flux method. We identify specific gas production emissions and emission processes (venting/fugitive or flaring/combustion) using observations of co-emitted ethane (C2H6) and CO2. We compare our top-down estimated fluxes with a ship-based top-down study in the Dutch sector and with bottom-up estimates from a globally gridded annual inventory, UK national annual point-source inventories, and with operator-based reporting for individual Dutch facilities. In this study, we find that all inventories, except for the operator-based facility-level reporting, underestimate measured emissions, with the largest discrepancy observed with the globally gridded inventory. Individual facility reporting, as available for Dutch sites for the specific survey date, shows better agreement with our measurement-based estimates. For all sampled Dutch installations together, we find that our estimated flux of (122.7 &plusmn; 9.7) kg h-1 deviates by a factor 0.7 (0.35&ndash;12) from reported values (183.1 kg h-1). Comparisons with aircraft observations in two other offshore regions (Norwegian Sea and Gulf of Mexico) show that measured, absolute facility-level emission rates agree with the general distribution found in other offshore basins despite different production types (oil, gas) and gas production rates, which vary by two orders of magnitude. Therefore, mitigation is warranted equally across geographies.</p

    Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil emissions

    Get PDF
    Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5–13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation

    Flaring efficiencies and NOx emission ratios measured for offshore oil and gas facilities in the North Sea

    Get PDF
    Gas flaring is a substantial global source of carbon emissions to atmosphere and is targeted as a route to mitigating the oil and gas sector carbon footprint due to the waste of resources involved. However, quantifying carbon emissions from flaring is resource-intensive, and no studies have yet assessed flaring emissions for offshore regions. In this work, we present carbon dioxide (CO2), methane (CH4), ethane (C2H6), and NOx (nitrogen oxide) data from 58 emission plumes identified as gas flaring, measured during aircraft campaigns over the North Sea (UK and Norway) in 2018 and 2019. Median combustion efficiency, the efficiency with which carbon in the flared gas is converted to CO2 in the emission plume, was 98.4% when accounting for C2H6 or 98.7% when only accounting for CH4. Higher combustion efficiencies were measured in the Norwegian sector of the North Sea compared with the UK sector. Destruction removal efficiencies (DREs), the efficiency with which an individual species is combusted, were 98.5% for CH4 and 97.9% for C2H6. Median NOx emission ratios were measured to be 0.003ppmppm-1CO2 and 0.26ppmppm-1CH4, and the median C2H6:CH4 ratio was measured to be 0.11ppmppm-1. The highest NOx emission ratios were observed from floating production storage and offloading (FPSO) vessels, although this could potentially be due to the presence of alternative NOx sources on board, such as diesel generators. The measurements in this work were used to estimate total emissions from the North Sea from gas flaring of 1.4Tgyr-1 CO2, 6.3Ggyr-1 CH4, 1.7Ggyr-1 C2H6 and 3.9Ggyr-1 NOx

    Quantification of methane emissions in Hamburg using a network of FTIR spectrometers and an inverse modeling approach

    Get PDF
    Methane (CH4) is a potent greenhouse gas, and anthropogenic CH4 emissions contribute significantly to global warming. In this study, the CH4 emissions of the second most populated city in Germany, Hamburg, were quantified with measurements from four solar-viewing Fourier transform infrared (FTIR) spectrometers, mobile in situ measurements, and an inversion framework. For source type attribution, an isotope ratio mass spectrometer was deployed in the city. The urban district hosts an extensive industrial and port area in the south as well as a large conglomerate of residential areas north of the Elbe River. For emission modeling, the TNO GHGco (Netherlands Organisation for Applied Scientific Research greenhouse gas and co-emitted species emission database) inventory was used as a prior for the inversion. In order to improve the inventory, two approaches were followed: (1) the addition of a large natural CH4 source, the Elbe River, which was previously not included in the inventory, and (2) mobile measurements were carried out to update the spatial distribution of emissions in the TNO GHGco gridded inventory and derive two updated versions of the inventory. The addition of the river emissions improved model performance, whereas the correction of the spatial distribution with mobile measurements did not have a significant effect on the total emission estimates for the campaign period. A comparison of the updated inventories with emission estimates from a Gaussian plume model (GPM) showed that the updated versions of the inventory match the GPM emissions estimates well in several cases, revealing the potential of mobile measurements to update the spatial distribution of emission inventories. The mobile measurement survey also revealed a large and, at the time of the study, unknown point source of thermogenic origin with a magnitude of 7.9 ± 5.3 kg h−1 located in a refinery. The isotopic measurements show strong indications that there is a large biogenic CH4 source in Hamburg that produced repeated enhancements of over 1 ppm which correlated with the rising tide of the river estuary. The CH4 emissions (anthropogenic and natural) of the city of Hamburg were quantified as 1600 ± 920 kg h−1, 900 ± 510 kg h−1 of which is of anthropogenic origin. This study reveals that mobile street-level measurements may miss the majority of total methane emissions, potentially due to sources located within buildings, including stoves and boilers operating on natural gas. Similarly, the CH4 enhancements recorded during the mobile survey from large-area sources, such as the Alster lakes, were too small to generate GPM emission estimates with confidence, but they could nevertheless influence the emission estimates based on total column measurements

    Multi-scale measurements combined with inverse modeling for assessing methane emissions of Hamburg

    Get PDF
    Urban areas are hotspots for greenhouse gas emissions. The short-lived greenhouse gas methane is the second-most prevalent greenhouse gas emitted by human activities, and its reduction will help mitigate climate change effectively. However, the source strengths and locations of methane emitters in the urban areas are highly uncertain. Here we present a multi-scale measurement campaign for assessing methane emissions in Hamburg. Hamburg is the second largest city in Germany with a population of about 1.8 million, and an important international harbor city. It has an interesting mixture of methane sources caused by anthropogenic emitters such as refineries and biogenic emitters such as wetlands associated with the strong tide of the Elbe River. Commissioned by UNEP, we conducted a campaign using remote sensing instruments and mobile surveys to investigate methane emissions of Hamburg. We deployed four automated solar-tracking Fourier transform spectrometer systems (Dietrich et al. 2021), one in the west, south, east and center of Hamburg to capture the total city emissions using a Bayesian inversion framework (Jones et al. 2021). Mobile measurements with a Picarro laser spectrometer in a car and a boat were performed to refine the spatial pattern of the emission inventory that is used as a prior for the inversion. We also deployed a wind LiDAR instrument to measure the 3D wind field that provides constraints to the transport model. In addition, an isotope ratio mass spectrometer was installed on a rooftop in the city center to distinguish anthropogenic and biogenic sources. Using the column measurements and inverse modelling, we are able to determine the total city emissions and have found a major natural source, whose emissions are not yet included in the standard emission inventories. This dominant biogenic source is also indicated by the stationary isotopic measurements of ÎŽ13C and ÎŽD. Nevertheless, more than half of the city emissions are attributed to anthropogenic emissions, indicating the importance of reducing these emissions. With our study, we show that the combination of mobile measurements and column measurements is a powerful technique to correct for the strength and spatial distribution of urban greenhouse gas emission inventories
    • 

    corecore