18 research outputs found

    The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes

    Get PDF
    Solubilisation of biological lipid bilayer membranes for analysis of their protein complement has traditionally been carried out using detergents, but there is increasing interest in the use of amphiphilic copolymers such as styrene maleic acid (SMA) for the solubilisation, purification and characterisation of integral membrane proteins in the form of protein/lipid nanodiscs. Here we survey the effectiveness of various commercially-available formulations of the SMA copolymer in solubilising Rhodobacter sphaeroides reaction centres (RCs) from photosynthetic membranes. We find that formulations of SMA with a 2:1 or 3:1 ratio of styrene to maleic acid are almost as effective as detergent in solubilising RCs, with the best solubilisation by short chain variants ( < 30 kDa weight average molecular weight). The effectiveness of 10 kDa 2:1 and 3:1 formulations of SMA to solubilise RCs gradually declined when genetically-encoded coiled-coil bundles were used to artificially tether normally monomeric RCs into dimeric, trimeric and tetrameric multimers. The ability of SMA to solubilise reaction centre-light harvesting 1 (RC-LH1) complexes from densely packed and highly ordered photosynthetic membranes was uniformly low, but could be increased through a variety of treatments to increase the lipid:protein ratio. However, proteins isolated from such membranes comprised clusters of complexes in small membrane patches rather than individual proteins. We conclude that short-chain 2:1 and 3:1 formulations of SMA are the most effective in solubilising integral membrane proteins, but that solubilisation efficiencies are strongly influenced by the size of the target protein and the density of packing of proteins in the membrane

    Effect of Polymer Composition and pH on Membrane Solubilization by Styrene-Maleic Acid Copolymers

    No full text
    The styrene-maleic acid (SMA) copolymer is rapidly gaining attention as a tool in membrane research, due to its ability to directly solubilize lipid membranes into nanodisk particles without the requirement of conventional detergents. Although many variants of SMA are commercially available, so far only SMA variants with a 2:1 and 3:1 styrene-to-maleic acid ratio have been used in lipid membrane studies. It is not known how SMA composition affects the solubilization behavior of SMA. Here, we systematically investigated the effect of varying the styrene/maleic acid on the properties of SMA in solution and on its interaction with membranes. Also the effect of pH was studied, because the proton concentration in the solution will affect the charge density and thereby may modulate the properties of the polymers. Using model membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine lipids at pH > pHagg, we found that membrane solubilization is promoted by a low charge density and by a relatively high fraction of maleic acid units in the polymer. Furthermore, it was found that a collapsed conformation of the polymer is required to ensure efficient insertion into the lipid membrane and that efficient solubilization may be improved by a more homogenous distribution of the maleic acid monomer units along the polymer chain. Altogether, the results show large differences in behavior between the SMA variants tested in the various steps of solubilization. The main conclusion is that the variant with a 2:1 styrene-to-maleic acid ratio is the most efficient membrane solubilizer in a wide pH range

    Effect of Polymer Composition and pH on Membrane Solubilization by Styrene-Maleic Acid Copolymers

    No full text
    The styrene-maleic acid (SMA) copolymer is rapidly gaining attention as a tool in membrane research, due to its ability to directly solubilize lipid membranes into nanodisk particles without the requirement of conventional detergents. Although many variants of SMA are commercially available, so far only SMA variants with a 2:1 and 3:1 styrene-to-maleic acid ratio have been used in lipid membrane studies. It is not known how SMA composition affects the solubilization behavior of SMA. Here, we systematically investigated the effect of varying the styrene/maleic acid on the properties of SMA in solution and on its interaction with membranes. Also the effect of pH was studied, because the proton concentration in the solution will affect the charge density and thereby may modulate the properties of the polymers. Using model membranes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine lipids at pH > pHagg, we found that membrane solubilization is promoted by a low charge density and by a relatively high fraction of maleic acid units in the polymer. Furthermore, it was found that a collapsed conformation of the polymer is required to ensure efficient insertion into the lipid membrane and that efficient solubilization may be improved by a more homogenous distribution of the maleic acid monomer units along the polymer chain. Altogether, the results show large differences in behavior between the SMA variants tested in the various steps of solubilization. The main conclusion is that the variant with a 2:1 styrene-to-maleic acid ratio is the most efficient membrane solubilizer in a wide pH range

    The styrene-maleic acid copolymer: : a versatile tool in membrane research

    Get PDF
    A new and promising tool in membrane research is the detergent-free solubilization of membrane proteins by styrene-maleic acid copolymers (SMAs). These amphipathic molecules are able to solubilize lipid bilayers in the form of nanodiscs that are bounded by the polymer. Thus, membrane proteins can be directly extracted from cells in a water-soluble form while conserving a patch of native membrane around them. In this review article, we briefly discuss current methods of membrane protein solubilization and stabilization. We then zoom in on SMAs, describe their physico-chemical properties, and discuss their membrane-solubilizing effect. This is followed by an overview of studies in which SMA has been used to isolate and investigate membrane proteins. Finally, potential future applications of the methodology are discussed for structural and functional studies on membrane proteins in a near-native environment and for characterizing protein-lipid and protein-protein interactions
    corecore