46 research outputs found

    Streambed organic matter controls on carbon dioxide and methane emissions from streams

    Get PDF
    Greenhouse gas (GHG) emissions of carbon dioxide (CO2) and methane (CH4) from streambeds are currently understudied. There is a paucity of research exploring organic matter (OM) controls on GHG production by microbial metabolic activity in streambeds, which is a major knowledge gap given the increased inputs of allochthonous carbon to streams, especially in agricultural catchments. This study aims to contribute to closing this knowledge gap by quantifying how contrasting OM contents in different sediments affect streambed GHG production and associated microbial metabolic activity. We demonstrate, by means of an incubation experiment, that streambed sediments have the potential to produce substantial amounts of GHG, controlled by sediment OM quantity and quality. We observed streambed CO2 production rates that can account for 35% of total stream evasion estimated in previous studies, ranging between 1.4 and 86% under optimal conditions. Methane production varied stronger than CO2 between different geologic backgrounds, suggesting OM quality controls between streambed sediments. Moreover, our results indicate that streambed sediments may produce much more CO2 than quantified to date, depending on the quantity and quality of the organic matter, which has direct implications for global estimates of C fluxes in stream ecosystems

    Reply to ‘Pseudoreplication and greenhouse-gas emissions from rivers'

    Get PDF
    Tiegs et al.1 highlight the significance and relevance of the findings of Comer-Warner et al.2 on greenhouse-gas emissions from streambed sediments but raise questions about some aspects of the experimental design. We support their call for more detailed field and laboratory-based studies on this subject. However, we believe that their concerns relate to uncertainties and limitations in the experimental design that were discussed explicitly in the original paper (and accompanying transparent peer review process—available online), or represent criticisms related to highly improbable minor anomalies that may unnecessarily dismiss experimental results as discussed below

    Hyaluronan molecular weight: effects on dissolution time of dissolving microneedles in the skin and on immunogenicity of antigen

    Get PDF
    Biomaterials used as matrix for dissolving microneedles (dMNs) may affect the manufacturing process as well as the potency of the active pharmaceutical ingredient, e.g. the immunogenicity of incorporated vaccine antigens. The aim of this study was to investigate the effect of the molecular weight of hyaluronan, a polymer widely used in the fabrication of dMNs, ranging in molecular weight from 4.8 kDa to 1.8 MDa, on the dissolution of microneedles in the skin in time as well as the antibody response in mice and T-cell activation in vitro. Hyaluronan molecular weight (HA-MWs) did not affect antibody responses (when lower than 150 kDa) nor CD4+ T-cell responses against model antigen ovalbumin. However, the HA-MWs had an effect on the fabrication of dMNs. The 1.8 MDa HA was not suitable for the fabrication of dMNs. Similarly, the 4.8 kDa HA generated dMN arrays less robust compared to the other HA-MWs requiring optimization of the drying conditions. Finally, higher HA-MWs led to longer application time of dMN arrays for a complete dissolution of microneedles into the skin. Specifically, we identified 20 kDa HA as the optimal HA-MW for the fabrication of dMNs as with this MW the dMNs are robust and dissolve fast in the skin without affecting immunogenicity

    Thermal sensitivity of CO2 and CH4 emissions varies with streambed sediment properties

    Get PDF
    Globally, rivers and streams are important sources of carbon dioxide and methane, with small rivers contributing disproportionately relative to their size. Previous research on greenhouse gas (GHG) emissions from surface water lacks mechanistic understanding of contributions from streambed sediments. We hypothesise that streambeds, as known biogeochemical hotspots, significantly contribute to the production of GHGs. With global climate change, there is a pressing need to understand how increasing streambed temperatures will affect current and future GHG production. Current global estimates assume linear relationships between temperature and GHG emissions from surface water. Here we show non-linearity and threshold responses of streambed GHG production to warming. We reveal that temperature sensitivity varies with substrate (of variable grain size), organic matter (OM) content and geological origin. Our results confirm that streambeds, with their non-linear response to projected warming, are integral to estimating freshwater ecosystem contributions to current and future global GHG emissions

    Development of PLGA nanoparticle loaded dissolving microneedles and comparison with hollow microneedles in intradermal vaccine delivery

    Get PDF
    Skin is an attractive but also very challenging immunisation site for particulate subunit vaccines. The aim of this study was to develop hyaluronan (HA)-based dissolving microneedles (MNs) loaded with PLGA nanoparticles (NPs) co-encapsulating ovalbumin (OVA) and poly(I:C) for intradermal immunisation. The NP:HA ratio used for the preparation of dissolving MNs appeared to be critical for the quality of MNs and their dissolution in ex vivo human skin. Asymmetrical flow field-flow fractionation and dynamic light scattering were used to analyse the NPs released from the MNs in vitro. Successful release of the NPs depended on the drying conditions during MN preparation. The delivered antigen dose from dissolving MNs in mice was determined to be 1 µg OVA, in NPs or as free antigen, by using near-infrared fluorescence imaging. Finally, the immunogenicity of the NPs after administration of dissolving MNs (NP:HA weight ratio 1:4) was compared with that of hollow MN-delivered NPs in mice. Immunization with free antigen in dissolving MNs resulted in equally strong immune responses compared to delivery by hollow MNs. However, humoral and cellular immune responses evoked by NP-loaded dissolving MNs were inferior to those elicited by NPs delivered through a hollow MN. In conclusion, we identified several critical formulation parameters for the further development of NP-loaded dissolving MNs

    Dupilumab is very effective in a large cohort of difficult-to-treat adult atopic dermatitis patients:First clinical and biomarker results from the BioDay registry

    Get PDF
    Introduction: Dupilumab has recently been approved for the treatment of moderate to severe atopic dermatitis (AD) in adults. Daily practice data on dupilumab treatment are scarce. Objective: To study the effect of 16-week treatment with dupilumab on clinical response and serum biomarkers in adult patients with moderate-severe AD in daily practice. Methods: Data were extracted from the BioDay registry, a prospective multicenter registry. Sixteen-week clinical effectiveness of dupilumab was expressed as number of patients achieving EASI-50 (Eczema Area and Severity Index) or EASI-75, as well as patient-reported outcomes measures (Patient-Oriented Eczema Measure, Dermatology Life Quality Index, Numeric Rating Scale pruritus). Twenty-one biomarkers were measured in patients treated with dupilumab without concomitant use of oral immunosuppressive drugs at five different time points (baseline, 4, 8, 12, and 16 weeks). Results: In total, 138 patients treated with dupilumab in daily practice were included. This cohort consisted of patients with very difficult-to-treat AD, including 84 (61%) patients who failed treatment on ≥2 immunosuppressive drugs. At week 16, the mean percent change in EASI score was 73%. The EASI-50 and EASI-75 were achieved by 114 (86%) and 82 (62%) patients after 16 weeks of treatment. The most reported side effect was conjunctivitis, occurring in 47 (34%) patients. During dupilumab treatment, disease severity-related serum biomarkers (TARC, PARC, periostin, and IL-22), eotaxin-1, and eotaxin-3 significantly decreased. Conclusion: Treatment with dupilumab significantly improved disease severity and decreased severity-related serum biomarkers in patients with very difficult-to-treat AD in a daily practice setting

    Towards Heat-stable Oxytocin Formulations: Analysis of Degradation Kinetics and Identification of Degradation Products

    Get PDF
    Purpose. To investigate degradation kinetics of oxytocin as a function of temperature and pH, and identify the degradation products. Materials and Methods. Accelerated degradation of oxytocin formulated at pH 2.0, 4.5, 7.0 and 9.0 was performed at 40, 55, 70 and 80°C. Degradation rate constants were determined from RP-HPLC data. Formulations were characterized by HP-SEC, UV absorption and fluorescence spectroscopy. Degradation products were identified by ESI-MS/MS. Results. The loss of intact oxytocin in RP-HPLC was pH- and temperature-dependent and followed (pseudo) first order kinetics. Degradation was fastest at pH 9.0, followed by pH 7.0, pH 2.0 and pH 4.5. The Arrhenius equation proved suitable to describe the kinetics, with the highest activation energy (116.3 kJ/mol) being found for pH 4.5 formulations. At pH 2.0 deamidation of Gln 4, Asn 5, and Gly 9-NH2, as well as combinations thereof were found. At pH 4.5, 7.0 and 9.0, the formation of tri- and tetrasulfidecontaining oxytocin as well as different types of disulfide and dityrosine-linked dimers were found to occur. Beta-elimination and larger aggregates were also observed. At pH 9.0, mono-deamidation of Gln 4, Asn 5, and Gly 9-NH2 additionally occurred. Conclusions. Multiple degradation products of oxytocin have been identified unequivocally, including various deamidated species, intramolecular oligosulfides and covalent aggregates. The strongly pH dependent degradation can be described by the Arrhenius equation. KEY WORDS: aggregation; Arrhenius kinetics; degradation; mass spectrometry; oxytocin
    corecore