96 research outputs found

    Thermally induced magnetic switching in bit-patterned media

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in Journal of Applied Physics 122, 043907 (2017) and may be found at https://doi.org/10.1063/1.4992808.We have studied the thermal variation of the switching field of magnetic islands at room temperature. A model bit-pattern media composed of an assembly of islands with 80 nm width was fabricated by sputter deposition onto a pre-patterned substrate. Using direct magnetic-contrast imaging of the islands under applied field, we extract the switching probabilities of individual islands. Based on an analytical model for the thermally activated switching of the islands, we are able to determine the intrinsic magnetic anisotropy of each island and, consequentially, a distribution of anisotropies for the island ensemble investigated. In the distribution, we identify a separated group of islands with a particularly small anisotropy. We attribute this group to islands containing misaligned grains triggering the magnetic reversal. At room temperature and slow field sweep rates, the observed thermal broadening of the switching-field distribution is small compared to the intrinsic broadening. However, we illustrate that thermal fluctuations play a crucial role at high sweep rates by extrapolating our results to technological relevant regimes

    Achieving diffraction-limited resolution in soft-X-ray Fourier-transform holography

    Get PDF
    The spatial resolution of microscopic images acquired via X-ray Fourier-transform holography is limited by the source size of the reference wave and by the numerical aperture of the detector. We analyze the interplay between both influences and show how they are matched in practice. We further identify, how high spatial frequencies translate to imaging artifacts in holographic reconstructions where mainly the reference beam limits the spatial resolution. As a solution, three methods are introduced based on numerical post-processing of the reconstruction. The methods comprise apodization of the hologram, refocusing via wave propagation, and deconvolution using the transfer function of the imaging system. In particular for the latter two, we demonstrate that image details smaller than the source size of the reference beam can be recovered up to the diffraction limit of the hologram. Our findings motivate the intentional application of a large reference-wave source enhancing the image contrast in applications with low photon numbers such as single-shot experiments at free-electron lasers or imaging at laboratory sources.BMBF, 05K10KTB, Verbundprojekt: FSP 301 - FLASH: Nanoskopische Systeme. Teilprojekt 1.1: Universelle Experimentierkammer für Streuexperimente mit kohärenten Femtosekunden-Röntgenpulsen Multi Purpose Coherent Scattering Chamber for FLASH and XFEL 'MPscatt

    Experimental evaluation of signal-to-noise in spectro-holography via modified uniformly redundant arrays in the soft x-ray and extreme ultraviolet spectral regime

    Get PDF
    We present dichroic x-ray lensless magnetic imaging by Fourier transform holography with an extended reference scheme via a modified uniformly redundant array (mURA). Holographic images of magnetic domains simultaneously generated by a single pinhole reference as well as by a mURA reference are compared with respect to the signal-to-noise ratio (SNR) as a function of exposure time. We apply this approach for spectro-holographic imaging of ferromagnetic domain patterns in Co/Pt multilayer films. Soft x-rays with wavelengths of 1.59 nm (Co L 3 absorption edge) and 20.8 nm (Co M 2,3 absorption edges) are used for image formation and to generate contrast via x-ray magnetic circular dichroism. For a given exposure time, the mURA-based holography allows to decouple the reconstruction SNR from the spatial resolution. For 1.59 nm wavelength, the reconstruction via the extended reference scheme shows no significant loss of spatial resolution compared to the single pinhole reference. In contrast, at 20.8 nm wavelength the single pinhole reveals some very intricate features which are lost in the image generated by the mURA, although overall a high-quality image is generated. The SNR-advantage of the mURA scheme is most notable when the hologram has to be encoded with few photons, while errors associated with the increased complexity of the reconstruction process reduce the advantage for high-photon-number experiments.BMBF, 05K13KT3, Verbundprojekt 05K2013 - DynaMaX: Messplatz für ultraschnelle Dynamik bei BESSY II. Teilprojekt

    Singleshot polychromatic coherent diffractive imaging with a high-order harmonic source

    Get PDF
    © 2020 Optical Society of America. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.Singleshot polychromatic coherent diffractive imaging is performed with a high-intensity high-order harmonic generation source. The coherence properties are analyzed and several reconstructions show the shot-to-shot fluctuations of the incident beam wavefront. The method is based on a multi-step approach. First, the spectrum is extracted from double-slit diffraction data. The spectrum is used as input to extract the monochromatic sample diffraction pattern, then phase retrieval is performed on the quasi-monochromatic data to obtain the sample’s exit surface wave. Reconstructions based on guided error reduction (ER) and alternating direction method of multipliers (ADMM) are compared. ADMM allows additional penalty terms to be included in the cost functional to promote sparsity within the reconstruction

    Picosecond x-ray magnetic circular dichroism spectroscopy at the Fe L-edges with a laser-driven plasma source

    Full text link
    Time-resolved x-ray magnetic circular dichroism (XMCD) enables a unique spectroscopic view on complex spin and charge dynamics in multi-elemental magnetic materials. So far, its application in the soft-x-ray range has been limited to synchrotron-radiation sources and free-electron lasers. By combining a laser-driven plasma source with a magnetic thin-film polarizer, we generate circularly polarized photons in the soft x-ray regime, enabling the first XMCD spectroscopy at the Fe L edges in a laser laboratory. Our approach can be readily adapted to other transition metal L and rare earth M absorption edges and with a temporal resolution of < 10 ps, a wide range of ultrafast magnetization studies can be realized.Comment: 7 pages, 4 figures, supplemental materia

    Multi-Color Imaging of Magnetic Co/Pt Multilayers

    Get PDF
    We demonstrate for the first time the realization of a spatial resolved two color, element-specific imaging experiment at the free-electron laser facility FERMI. Coherent imaging using Fourier transform holography was used to achieve direct real space access to the nanometer length scale of magnetic domains of Co/Pt heterostructures via the element-specific magnetic dichroism in the extreme ultraviolet spectral range. As a first step to implement this technique for studies of ultrafast phenomena we present the spatially resolved response of magnetic domains upon femtosecond laser excitation

    Photon correlation spectroscopy with heterodyne mixing based on soft-x-ray magnetic circular dichroism

    Get PDF
    Many magnetic equilibrium states and phase transitions are characterized by fluctuations. Such magnetic fluctuation can in principle be detected with scattering-based x-ray photon correlation spectroscopy (XPCS). However, in the established approach of XPCS, the magnetic scattering signal is quadratic in the magnetic scattering cross section, which results not only in often prohibitively small signals but also in a fundamental inability to detect negative correlations (anticorrelations). Here, we propose to exploit the possibility of heterodyne mixing of the magnetic signal with static charge scattering to reconstruct the first-order (linear) magnetic correlation function. We show that the first-order magnetic scattering signal reconstructed from heterodyne scattering now directly represents the underlying magnetization texture. Moreover, we suggest a practical implementation based on an absorption mask rigidly connected to the sample, which not only produces a static charge scattering signal but also eliminates the problem of drift-induced artificial decay of the correlation functions. Our method thereby significantly broadens the range of scientific questions accessible by magnetic x-ray photon correlation spectroscopy

    High-resolution magnetic-domain imaging by Fourier transform holography at 21 nm wavelength

    Get PDF
    Exploiting x-ray magnetic circular dichroism at the L-edges of 3d transition metals, Fourier transform holography has become a standard technique to investigate magnetic samples with sub-100 nm spatial resolution. Here, magnetic imaging in the 21 nm wavelength regime using M-edge circular dichroism is demonstrated. Ultrafast pulses in this wavelength regime are increasingly available from both laser- and accelerator-driven soft x-ray sources. We explain the adaptations concerning sample preparation and data evaluation compared to conventional holography in the 1 nm wavelength range. We find the correction of the Fourier transform hologram to in-plane Fourier components to be critical for high-quality reconstruction and demonstrate 70 nm spatial resolution in magnetization imaging with this approach.BMBF, 05K10KTB, Verbundprojekt: FSP 301 - FLASH: Nanoskopische Systeme. Teilprojekt 1.1: Universelle Experimentierkammer für Streuexperimente mit kohärenten Femtosekunden-Röntgenpulsen Multi Purpose Coherent Scattering Chamber for FLASH and XFEL 'MPscatt'
    corecore